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Abstract

We determine the decidability of the intReg-problem for several languages.
The intReg-problem of a fixed language L asks whether the intersection of L
with a given regular language R is empty or not. We prove undecidability
of the intReg-problem for variations of the Machine Language, Bounded
Tiling, Corridor Tiling, Bounded PCP, Equivalence of Regular
Expressions in a shuffled encoding, and String Equivalence Modulo
Padding in a shuffled encoding. We prove decidability of the intReg-problem for
String Equivalence Modulo Padding in a sequential encoding as well as
over a unary alphabet in both encodings, SAT, k-TQBF, True Quantified
Boolean Formula, Integer Linear Programming, Vertex Cover,
Independent Set, Knapsack, and Integer Knapsack. In the most cases
we show the decidability of the intReg-problem by constructing a condensed
automaton condensed(A) from a given DFA A. In L(condensed(A)) only
finitely many words have to be tested for membership in the intersection
(defined by intReg) under which there is one element in the intersection if and
only there is one in the original regular language described by A. We develop
the three techniques merging, separating, and replacing of constructing the
automaton condensed(A) and demonstrate them on the problems Vertex
Cover, Independent Set, and Knapsack.
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Zusammenfassung

Wir präsentieren Entscheidbarkeitsresultate für das Schnittleerheitsproblem
mit regulären Sprachen (kurz intReg) für diverse Sprachen. Das so genannte
intReg-Problem für eine bestimmte Sprache L fragt, ob der Schnitt von L
mit einer gegebenen regulären Sprache R leer ist oder nicht. Wir zeigen die
Unentscheidbarkeit des intReg-Problems für folgende Sprachen: Verschiedene
Varianten der Maschinen-Sprache, Bounded Tiling, Corridor Tiling,
Bounded PCP, Equivalence of Regular Expressions in einer geshuf-
felten Codierung und String Equivalence Modulo Padding ebenfalls
in einer geshuffelten Codierung. Dahingegen werden wir die Entscheidbarkeit
des intReg-Problems für String Equivalence Modulo Padding in einer
sequentiellen Codierung, sowie über einem einelementigen Alphabet in bei-
den Codierungsvarianten, wie auch für SAT, k-TQBF, True Quantified
Boolean Formula, Integer Linear Programming, Vertex Cover,
Independent Set, Knapsack und Integer Knapsack zeigen. In den
meisten Fällen zeigen wir die Entscheidbarkeit des intReg-Problems durch die
Konstruktion eines komprimierten Automaten condensed(A) aus einem gegebe-
nen deterministischen endlichen Automaten A. Für das intReg-Problem der
Sprache L und den aus A konstruierten Automaten condensed(A) gilt dann,
dass ein Element im Schnitt von L und L(A) genau dann liegt, wenn wir
ein Element in L(condensed(A)) ∩ L unter endlich vielen Kandidaten aus
L(condensed(A)) finden. Für die Konstruktion von condensed(A) präsentieren
wir mit dem Zusammenfassen, Separieren und Ersetzen drei Techniken, die
wir an den Problemen Vertex Cover, Independent Set und Knapsack
demonstrieren.
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Chapter 1

Introduction

1.1 Problem Definition and Related Work

This work examines the decidability of the so called Regular Intersection
Emptiness Problem, to which we will refer as intReg. The problem is considered
regarding a fixed language L and asks whether the intersection of L with a
given regular language is non-empty.

Definition 1 (intReg(L)). Let R be a regular language. The question whether
L ∩R 6= ∅ is defined as the intReg-problem of L or short intReg(L).

The problem primordially occurred in the task of distinguishing families
of formal languages, like regular or context-free languages, from complexity
classes. While for formal language classes we have pumping lemmas and plenty
decidabilities, the complexity classes lack those arguments. This distinctions
are emphasized by the existence of families of formal languages being densely
complete in the classes NP, SAC1 and NSPACE(log n) [KL12, KLL15], but the
differentiation of formal language classes from complexity classes currently relies
only on examples [Lan96]. In order to find a criterion which generally separates
the two kinds of language classes, we investigated the intReg-problem. Since
families of formal language classes, like the regular and context-free languages
and their subclasses, are closed under intersection with regular languages and
have a decidable emptiness problem, a decidable intReg-problem seemed to
be a good criterion candidate. But this criterion was voided by proving the
decidability of the intReg-problem for True Quantified Boolean Formula
[GKLW18], a problem which is PSPACE-complete [Pap03]. Since all known
families of formal languages are contained in NP (even the largest known
one in the OI-hierarchy [Dam82]) finding a problem (most likely) outside of
NP with a decidable regular intersection emptiness problem, disqualifies a
decidable intReg-problem as a criterion. Further work in this field has developed
a technique called “hiding” which alters a decidable language L by expanding
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2 CHAPTER 1. INTRODUCTION

the words of L with redundant information and adding all misshaped words to
L [Gü19]. The resulting language L′ will have a decidable intReg-problem. This
approach is still in work. While the technique of hiding heavily changes the
notation of the language, in this work we are only interested in the decidability
of natural encoded languages.

If we focus on the class NP, it turned out quickly that with SAT there
are problems in NP with a decidable intReg-problem and with The Machine
Language For NP there are problems inside NP with an undecidable intReg-
problem. This thesis was motivated by the leading question what problems
with a decidable intReg-problem have in common and what distinguishes them
from problems with an undecidable intReg-problem. Therefore, several problems
with different complexities are presented and the decidability of their intReg-
problem is investigated. The aim was to find a list of conditions for the regarded
language, inspired by the theorem of Greibach [Gre68], which lead to a decidable
or undecidable intReg-problem. This goal could not be fulfilled, but we were
able to develop three different techniques with which intReg-decidability can
be shown. Those techniques also give an insight in the nature of problems
and suggest a problem classification according to the composition of items in a
problem instance. The techniques deal with merging, separating and replacing
problem items in order to simplify a problem instance.

The search for a criterion for decidability of the intReg-problem is
also a search for limits of decidability, as they where discovered for other
questions. For example, language equivalence is undecidable for context-free
languages in general, but becomes decidable for CFL’s over unary alphabets
[HU69]. The problem is also decidable if we consider right-linear context-free
grammars, but undecidable for linear or arbitrary context-free grammars
[HIRS76]. Just like Hunt, we are trying to identify “simple underlying
properties” of the investigated languages which determine the decidability
of their intReg-problem. We will show that the intReg-problem for string
equivalence modulo padding is undecidable in a shuffled encoding but becomes
decidable in a sequential encoding. The problem is also decidable for both en-
codings if we restrict the string to contain only one non-padding type of symbols.

This thesis is structured as follows: We begin in Chapter 2 with Turing
machine related languages with an undecidable intReg-problem. Then, in
Chapter 3 we investigate the more natural problem of Equivalence of
Regular Expressions and prove undecidability of its intReg-problem. We
differentiate here between different encodings and alphabet sizes uncovering
some limits of decidability. In Chapter 4 we review the article “Deciding
Regular Intersection Emptiness of Complete Problems for PSPACE and the
Polynomial Hierarchy”[GKLW18] and introduce the construction of the finite
automaton condensed(A) based on a given DFA A. With condensed(A) we
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will be able to solve the intReg-problem, since only finitely many elements in
condensed(A) have to be considered in order to find a word in L ∩ L(A) if
there exists one. The proof-schema of construction a condensed automaton
condensed(A) in order to show decidability of the intReg-problem will stretch
through the following chapters. In Chapter 5 we will adapt those ideas to
show decidability of the intReg-problem for Integer Linear Programming.
Finally, in Chapter 6 we differentiate the techniques used in Chapter 4 and 5
and demonstrate each of them by proving decidability of the intReg-problem
for Vertex Cover, Independent Set, and Knapsack. In Chapter 7
we discuss the four types of problems, which are induced by our developed
techniques and the decidability of their intReg-problem. We also give an overview
over the achieved intReg-decidability results spanning from problems in L to
PSPACE-complete problems.

1.2 Preliminaries

We assume the reader to be familiar with common families of formal languages
[HU69] and complexity classes [Pap03]. We demand a good understanding of
regular languages, regular expressions, deterministic finite automata, and the
Pumping Lemma for regular languages. We sometimes use regular expressions in
the description of a language for readability reasons. Such a regular expression
e is meant to be replaced by a variable string w and the condition w ∈ L(e),
where L(e) denotes the languages described by e. The considered problems as
well as their encodings are introduced in the referring chapters.
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Chapter 2

Undecidable Regular
Intersection Emptiness

2.1 Introduction

In this chapter we will focus on NP-hard languages with an undecidable
intReg-problem. The presented problems are restricted version of well-known
undecidable problems. In all three cases, the intersection with a regular language
will remove the restriction and therefore show undecidability of the regular
intersection emptiness problems.

2.2 Machine Languages

For several complexity classes, we can define a machine language which is
complete for this complexity class. We will show that the following machine
languages have an undecidable intReg-problem.

Definition 2 (Machine language for NL).
Given: Encoded nondeterministic Turing-Machine 〈M〉, input-word x, and
string an with n ∈ N.
Question: Does M accept x visiting only log(n) different tape-positions?
Encoding: LNL = {〈M〉, x, an |M is an NTM accepting x in log(n) space}.

Definition 3 (Machine language for NP).
Given: Encoded nondeterministic Turing-Machine 〈M〉, input-word x, and
string an with n ∈ N.
Question: Does M accept x in n steps?
Encoding: LNP = {〈M〉, x, an |M is an NTM accepting x in n steps}.

Definition 4 (Machine language for PSPACE).
Given: Encoded deterministic Turing-Machine 〈M〉, input-word x, and string

5



6 CHAPTER 2. UNDECIDABLE INTREG

an with n ∈ N.
Question: Does M accept x visiting only n different tape-positions?
Encoding: LPSPACE = {〈M〉, x, an |M is an TM accepting x in n space}.

Theorem 1. Let R be a regular language. It is undecidable whether the
intersection of R with

• the machine language for NL

• the machine language for NP

• the machine language for PSPACE

is empty or not, i.e. intReg(LNL), intReg(LNP), and intReg(LPSPACE) are unde-
cidable.

Proof. Let 〈Mfixed〉 be an arbitrary but fixed encoded Turing-Machine with the
input alphabet Σ. We define the regular language

R = {〈Mfixed〉, x, an | x ∈ Σ∗, n ≥ 0}.

Then,

• R ∩ LNL = ∅ ⇔ L(Mfixed) = ∅.

• R ∩ LNP = ∅ ⇔ L(Mfixed) = ∅.

• R ∩ LPSPACE = ∅ ⇔ L(Mfixed) = ∅.

Since the emptiness-problem for recursive enumerable sets is undecidable
[HU69], the undecidability of the problems intReg(LNL), intReg(LNP), and
intReg(LPSPACE) follows.

2.3 Bounded and Corridor Tiling

The next problem we want to investigate is about the tiling of the plane. For
a given set of tile types and a fixed corner tile, the question is to tile a plane
with the given tiles under some conditions. While the problem for an infinite
plane is undecidable [Str], it becomes NP-complete if we restrict the plane to
an n× n-square with a given edge coloring, and PSPACE-complete if we only
restrict the width of the plane by a given edge coloring and ask for a finite
height, such that the plane can be tiled [vEB+97].

First, we will give a formal definition of the problem Bounded Tiling.
Then, we will show that this problem has an undecidable intReg-problem
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by reducing the emptiness-problem for Turing-Machines to the problem
intReg(Bounded Tiling).

A tile is a square unit where each of the edges is labeled with a color from a
finite set C of colors. The color assignment is described by tile types. A tile type
is a sequence t = (w, n, e, s) with w, n, e, s ∈ C of four symbols representing the
coloring of the left, top, right, and bottom edge color. Tiles can be regarded as
instances of tile types. A tile must not be rotated or reflected. In the following
problem, we will give a finite set of tile types as input. From every tile type
arbitrary many tiles can be placed. The tiles have to cover up a square grid
region such that adjacent edges have to have the same color. The grid comes
with an edge coloring which preset the edge color of tiles at the border of the
square grid. A tiling is a mapping from the square grid region to a set of tile
types. With 〈T 〉 we denote a proper encoding of the tile type set T and with
[n] we denote the set {1, 2, . . . , n}.

Definition 5 (Bounded Tiling).
Given: Finite set T of tile types with colors from a finite color set C and an
n× n square grid region V with a given edge coloring.
Question: Is there a tiling function f : [n] × [n] → T that tiles V extending
the edge coloring while fulfilling the following condition, where the indexed
function f(i, j)k references the color of the edge in position k of the tile f(i, j).

f(i, j)w = f(i+ 1, j)e, f(i, j)n = f(i, j + 1)s (2.1)

Meaning adjacent edges of the tiles have the same color.
Encoding: Bounded Tiling := {〈T 〉, l$t$r$b | there is a tiling f : [n]× [n]→
T fulfilling condition (2.1) and extending edge coloring l$t$r$b.} Where l =
l1#l2# . . .#ln, t = t1#t2# . . .#tn, r = r1#r2# . . .#rn, and b =
b1#b2# . . .#bn with li, ti, ri, bi ∈ C.

Howard Straubing gives in his article “Tiling Problems” [Str] a reduction
from the complement of the halting problem to the problem of tiling an infinite
plane. Therefore, he gives an algorithms “that takes input 〈M〉 and produces
the associated 〈T, c〉” (where c is the given corner tile in the unrestricted case
of the problem). The tiles represent every possible transition of the Turing
machine and are constructed in a way that correctly tiled rows correspond to
configurations of the given Turing machine. The four colors of the tiles also en-
sure that two adjacent rows represent two consecutive configurations. Therefore,
the infinite plane can only be tiled if and only if the Turing machine runs forever.

Peter van Emde Boas [vEB+97] uses a similar construction to simulate
Turing machines and shows that the Bounded Tiling problem is NP-complete.
For a given nondeterministic Turing machine, the possible transitions and tape
cell labellings are transformed into a set of tile types. The input word, padded
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with blank symbols, is encoded in the button edge coloring b and a distinguished
accepting configuration is encoded in the top edge coloring t. The left and right
borders are colored with the fixed color white which is a color only occurring
on vertical edges and which do not represent any state or alphabet letter of
the Turing machine. So, white can be seen as a neutral border color. Blank
symbols are trailed to the input word to enlarge the size of the square field to
the exact time bound of the Turing machine. The Turing machine is altered
in a way that it accepts with one distinguished accepting configuration. The
tile types are constructed in a way that this accepting configuration can be
repeated over several adjacent rows.

Therefore, the constructed edge colored square region can be correctly tiled
matching the edge coloring if and only if the given Turing machine accepts the
input word within its time bound.

With that construction in mind, we will now prove that the intReg-problem
for Bounded Tiling is undecidable.

Theorem 2. Let R be a regular language. It is undecidable whether R∩
Bounded Tiling 6= ∅, i.e. the problem intReg(Bounded Tiling) is undecid-
able.

Proof. We will give a reduction from the undecidable problem L6=∅ := {〈M〉 |
M is a nondeterministic TM with L(M) 6= ∅}. Let 〈M〉 ∈ L6=∅. We will con-
struct a regular language R which contains a solvable Bounded Tiling
instance if and only if M accepts at least one word. We alter the machine
M to an NTM N which behaves like M except having only one distinguished
accepting configuration, i.e. an empty tape with the head on the first position
of the former input word. According to Straubing [Str] and van Emde Boas
[vEB+97], there is an algorithm which, given a TM N , produces the corre-
sponding set of tile types T such that a correct extending tiling of a given edge
colored square filed corresponds to a sequence of successive configurations of
the given machine, starting on an input word represented through the coloring
of the bottom border.

Let TN be the corresponding tile type set for the NTM N and let CN be the
set of colors appearing in TN . Let CΣ ⊆ CN be the subset of colors representing
input alphabet signs, let � ∈ CN be the white color representing a white vertical
border edge of the square grid, and let � ∈ CN be the color representing an
empty tape cell. Finally let qf ∈ CN be the color representing the accepting
state of the Turing machine.
We define the regular set R as

R = {〈TN〉, �∗ $ qf�
∗ $ �∗ $ CΣ

∗�∗}.

The set R consists of the set of tile types for the NTM N together with edge
colorings for every possible input word and every possible size of the field V .
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The top row will always contain the accepting configuration of N padded with
arbitrary many blank symbols. The left and right borders of the field V can
consist of arbitrary many white edges, while the bottom row can encode every
possible input word with arbitrary many added blank symbols allowing an
arbitrary time bound for the Turing machine. Note that the edge coloring does
not have to define a square, but the square shape is also contained in the set
R for every input word and every number of padding symbols. Therefore, for
every input word w, the set R contains every size of squared fields with w
encoded in the bottom edge coloring. The tile type set of R is constructed in a
way that in a valid tiling adjacent rows will represent successive configurations
of the Turing machine. So, for every number of steps the TM makes on the
input word, there is a square field with the input word encoded in the set R
preventing enough space for the configurations of the TM. This brings us to
our main claim.

R ∩Bounded Tiling 6= ∅ ⇔ L(N) 6= ∅

“⇒”: The tile set of R was constructed from N in a way that valid
tilings correspond to successive listed configurations of the NTM N . This
means that, if R ∩ Bounded Tiling 6= ∅, R contains an edge colored
square field which is large enough, such that there is a sequence of suc-
cessive configurations fitting in the square field starting with the initial
configuration containing the input word and ending in the single accepting
configuration of N . Therefore, there is a finite sequence of configurations of
the TM N , which proves that N accepts the input word and therefore L(N) 6= ∅.

“⇐”: If on the other hand N accepts at least one word w in t steps using
s space units, we can construct a tiling from the set of tile types of N . This
tiling will fill a plane of size t × s of which the bottom row will contain the
input word w and the top row will contain the single accepting configuration of
length s. We can enlarge this tiling using white border tiles and the �-sign tiles
representing empty tape locations to a square tiling of size max(t, s)×max(t, s).
If we take the edge coloring of this square tiling, we get an instance of Bounded
Tiling which is obviously solvable. Since R contains every combination of
input word and field size referring to N , it also contains the just described
instance of Bounded Tiling and therefore R ∩Bounded Tiling 6= ∅.

With the same argument, we can show that the PSPACE-complete problem
Corridor Tiling [vEB+97] also has an undecidable intReg-problem.

Definition 6 (Corridor Tiling).
Given: Finite set T of tile types with colors from a finite color set C, a top
edge coloring t, and a bottom edge coloring b, both of length n.
Question: Is there a finite height h and a tiling function f : [n]× [h]→ T that
tiles V extending the edge coloring while fulfilling the tiling Condition 2.1.
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Theorem 3. Let R be a regular language. It is undecidable whether R∩ Cor-
ridor Tiling 6= ∅, i.e. the problem intReg(Corridor Tiling) is undecidable.

Proof. The proof works analogously to the proof of Theorem 2 with a reduction
from the emptiness problem of Type 0 languages, the only difference is that
R only encodes the bottom and top borders and no left and right borders.
Every rectangle can be embedded in a larger square and vice versa, so if there
is an accepting run of the considered Turing machine, we will find a large
enough square to hold the corresponding tiling as we have shown in the proof
of Theorem 2. The upper and lower border of this square gives us the analogue
corridor tiling instance in R.

2.4 Bounded PCP

An other undecidable problem, which becomes decidable if we restrict the
size of the potential solution, is the Post’s Correspondence Problem
(short PCP). We will show that the NP-complete version Bounded Post
Correspondence Problem [GJ79] (short BPCP) has an undecidable intReg-
problem by a reduction from the unrestricted undecidable PCP problem [HU69].
The problem PCP will be studied in detail in chapter 3.

Definition 7 (BPCP).
Given: Finite alphabet Σ, two sequences a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) of strings from Σ∗, and a positive integer K ≤ n.
Question: Is there a sequence i1, i2, . . . , ik of k ≤ K (not necessarily distinct)
positive integers, each between 1 and n, such that the two strings ai1ai2 . . . aik
and bi1bi2 . . . bik are identical?
Encoding: LBPCP := {a1#a2# . . .#an$b1#b2# . . .#bn$ bin(K) | K ≤ n ∧ a =
(a1, a2, . . . , an), b = (b1, b2, . . . , bn) is a PCP instance with a solution ≤ K}.

Theorem 4. Let R be a regular language. It is undecidable whether R∩BPCP
6= ∅, i.e. the problem intReg(BPCP) is undecidable.

Proof. We will give a reduction PCP ≤ intReg(BPCP). Let a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn) be a PCP instance. We construct a regular language R
consisting of the given PCP instance combined with every possible solution
bound K. Since K is bounded by the length of list a and b, we will pump
those lists up by repeating the last list element of both lists arbitrarily often.
Because the same element can be picked multiple times, adding elements already
appearing in the given lists does not change the solvability of the instance. We
define R as

R = {a1#a2# . . .#an(#an)∗$b1#b2# . . .#bn(#bn)∗${0, 1}∗}.
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It holds that R∩BPCP 6= ∅ if and only if there is a sequence of indexes
i1, i2, . . . , im such that ai1ai2 . . . aim = bi1bi2 . . . bim .

“⇒”: Let w = a1#a2# . . .#an(#an)l$b1#b2# . . .#bn(#bn)l$ bin(K) ∈
R∩BPCP. Since w is a valid BPCP instance, the length of lists a and b are
equal and K ≤ l+n. The fact that w ∈ BPCP means that there is a sequence
of indexes i1, i2, . . . , ik such that ai1ai2 . . . aik = bi1bi2 . . . bik .

“⇐”: Let i1, i2, . . . , im be a sequence of indexes such that ai1ai2 . . . aim =
bi1bi2 . . . bim . By the construction of R, there is a word w ∈ R with w =
a1#a2# . . .#an(#an)m−n$b1#b2# . . .#bn(#bn)m−n$ bin(m) ∈ R∩. The lists
a and b are padded with elements form the lists itself, until the input word is
long enough, such that the length of the solution is less than the length of the
input word and thereby can be bounded by K. If we set K = k = m, we have
w ∈ BPCP.
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Chapter 3

Equivalence of Regular
Expressions

3.1 Introduction

In this chapter we will show that the problem of Equivalence of Regular
Expressions short ≡RegEx over a binary alphabet in a shuffled encoding
has an undecidable regular intersection emptiness problem. It turns out,
that the problem is already undecidable if the regular expressions do not use
union or the Kleene star. Thus, also the problem of String Equivalence
Modulo Padding over a binary alphabet in a shuffled encoding has an
undecidable intReg-problem. When we consider the String Equivalence
Modulo Padding problem over a unary alphabet or in a sequential encoding,
the problem becomes decidable.

3.2 Regular Expressions in a Shuffled Encod-

ing

We first want to define the problem of Equivalence of Regular Expres-
sions (adapted from [GJ79]). For a regular expression E we denote with L(E)
the regular language described by E. We use concatenation implicitly and omit
the operator sign.

Definition 8 (Shuffled≡RegEx).
Given: A word w = e1,1e2,1e1,2e2,2e1,3e2,3 . . . e1,ne2,n over the alphabet Σ ∪
{∅, ε, (, ), |, ∗} such that E1 = e1,1e1,2e1,3 . . . e1,n and E2 = e2,1e2,2e2,3 . . . e2,n are
regular expressions over the alphabet Σ using the operators union, concatenation,
and Kleene star. Note that one regular expression can be padded with ε or ∅ if
the regular expression are of unequal length.
Question: Is L(E1) = L(E2)?

13
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The problem of equivalence of the regular expressions is well known to be
PSPACE-complete [SM73]. Since we can change the encoding of an Equiv-
alence of Regular Expressions instance from shuffled to sequential
and vice versa in quadratic time, the shuffled version of this problem is also
PSPACE-complete.

For readability reasons, we will refer to words w ∈ Shuffled≡RegEx as

w =
e1,1

e2,1

. . .
e1,n

e2,n

.

We will show that intReg(Shuffled≡RegEx) is undecidable by a reduction
from the Post’s Correspondence Problem [HU79] short PCP.

Definition 9 (PCP).
Given: Two lists A = a1, a2, . . . , ak and B = b1, b2, . . . , bk with k ∈ N consisting
of words over some alphabet Σ.
Question: Is there a sequence of integers i1, i2, . . . , in with 1 ≤ ij ≤ k such that
interpreted as indexes for strings, it holds that ai1ai2 . . . ain = bi1bi2 . . . bin .

Fact 1. The Post’s Correspondence Problem (PCP) is undecidable
[HU79].

Reduction

From a given PCP instance we will construct a regular language LReg which
words will describe possible solutions of the PCP instance. The words will
consist of two shuffled regular expression using only the concatenation as an
operator. By construction, the first regular expression will be a concatenation of
strings from the A list of the PCP instance while the second regular expression
will consists of the concatenated corresponding strings from the B list. Since the
regular expressions only use concatenation, languages described by them only
contain one element each. The language LReg will contain two shuffled regular
expressions describing the same language if and only if the PCP instance has
a feasible solution.

Theorem 5. Let R be a regular language. It is undecidable whether
Shuffled≡RegEx ∩ R 6= ∅, i.e. the problem intReg(Shuffled≡RegEx) is un-
decidable.

Proof. We give a reduction PCP ≤ intReg(Shuffled ≡RegEx) and translate a
given PCP instance into a regular language LReg. We emphasize references
to the regular expression defining the language LReg, while references to the
regular expressions encoded in the words of LReg are not highlighted. We also
emphasize references to the regular language of shuffled regular expressions.
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Let A = a1, a2, . . . , ak and B = b1, b2, . . . , bk be a PCP instance. We define
a regular expression, describing a regular language LReg of shuffled regular
expressions describing concatenations of list elements. Let LReg be defined
through the regular expression(

a1
′

b1
′

∣∣∣∣ a2
′

b2
′

∣∣∣∣ . . . ∣∣∣∣ ak ′bk ′
)+

.

Let ai
′

bi
′ =

ai1
′

bi1
′
ai2
′

bi2
′ . . .

ail
′

bil
′ with l := max(|ai|, |bi|) where

aij
′

bij
′ =



aij
bij

if |ai| ≥ j ∧ |bi| ≥ j,

aij
ε

if |ai| ≥ j ∧ |bi| < j,

ε
bij

if |ai| < j ∧ |bi| ≥ j.

The ε sign is here used as an alphabet symbol of the language LReg. Intuitively

spoken, the string ai
′

bi
′ consists of the two shuffled strings ai, bi where the shorter

string is padded with ε-signs at the end until both stings have the same length.
Therefore, LReg consists of all possible pairwise concatenations of elements of
the lists A and B where the concatenated strings are padded with ε-signs to
have the same length.

For every PCP instance the described regular expression of the language
LReg can be computed by a computable total function. It remains to show that
the PCP instance A, B has a solution if and only if LReg∩ Shuffled≡RegEx

6= ∅. More precisely, the intersection will contain all solutions of the PCP
instance, if they exist.

“⇒”: Let i1, i2, . . . , in be a solution of the PCP instance A,B such that
ai1ai2 . . . ain = bi1bi2 . . . bin . By construction, the regular language LReg contains

all possible concatenations of the strings a1′

b1
′ , . . . ,

ak
′

bk
′ corresponding to the pairs

(a1, b1), . . . (ak, bk) of the strings of the lists A and B. Therefore, LReg also
contains the word

w =
ai1
′

bi1
′
ai2
′

bi2
′ . . .

ain
′

bin
′ .

The word w consists of the two shuffled regular expressions E1 = ai1
′ai2
′ . . . aik

′

and E2 = bi1
′bi2
′ . . . bik

′. Since they are both nonempty strings with padded
ε’s their described language is a singleton set. By construction, we have
L(E1) = {ai1ai2 . . . aik} and L(E2) = {bi1bi2 . . . bik}. By assumption is
ai1ai2 . . . ain = bi1bi2 . . . bin , therefore we have L(E1) = L(E2) and w ∈ LReg∩
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Shuffled≡RegEx.

“⇐”: Assume LReg∩ Shuffled≡RegEx 6= ∅. Let w =
ai1
′

bi1
′
ai2
′

bi2
′ . . .

ain
′

bin
′ ∈

LReg∩ Shuffled≡RegEx consists of the two shuffled regular expressions E1 =
ai1
′ai2
′ . . . aik

′ and E2 = bi1
′bi2
′ . . . bik

′. By assumption is L(E1) = L(E2). Since
L(E1) and L(E2) each contain only one element, from which the describing
regular expressions differ only by padded ε-signs, it holds by construction that
ai1ai2 . . . ain = bi1bi2 . . . bin . Therefore, i1, i2, . . . , in is a solution of the PCP
instance.

3.3 String Equivalence

To show the undecidability of the intReg(Shuffled≡RegEx) problem we have
made use of only one operator of regular expressions, namely the concate-
nation. If we restrict the Shuffled≡RegEx problem to regular expressions
using only letters from Σ, the ε-sign and the concatenation, we get the much
easier problem of Shuffled String Equivalence Modulo Padding, short
Shuffled≡Stringε . Since we are only using the associative operation of con-
catenation, we can get rid of brackets. All of the following problems are in
the complexity class L, since they all can be solved deterministically using two
pointers.

Definition 10 (Shuffled≡Stringε).
Given: A word w = s1,1s2,1s1,2s2,2s1,3s2,3 . . . s1,ns2,n such that si ∈ Σ ∪ {ε}.
Question: Is h(s1,1s1,2s1,3 . . . s1,n) = h(s2,1s2,2s2,3 . . . s2,n) where h : Σ∪{ε} → Σ
is an erasing homomorphism which leaves all signs in Σ unchanged and deletes
the ε-signs.

Theorem 6. Let R be a regular language. It is undecidable whether
Shuffled≡Stringε ∩R 6= ∅, i.e. the problem intReg(Shuffled≡Stringε) is
undecidable.

Proof. In the proof of Theorem 5 we have constructed a regular language of
shuffled regular expressions which described singleton sets by using concate-
nation and padding with ε-signs. So, the two regular expressions describe the
same language if and only if the regular expressions themselves yield the same
string under deleting the ε-signs. Therefore, the proof of Theorem 5 also works
for Theorem 6.

If we restrict the Problem Shuffled≡Stringε to unary alphabets Σ, the
intReg problem becomes decidable.

Definition 11 (Unary-Shuffled≡Stringε).
Given: A word w = s1,1s2,1s1,2s2,2s1,3s2,3 . . . s1,ns2,n such that si ∈ Σ∪ {ε} with
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|Σ| = 1.
Question: Is h(s1,1s1,2s1,3 . . . s1,n) = h(s2,1s2,2s2,3 . . . s2,n) where h : Σ∪{ε} → Σ
is an erasing homomorphism which leaves all signs in Σ unchanged and deletes
the ε-signs.

Theorem 7. Let R be a regular language. It is decidable whether Unary-
Shuffled≡Stringε ∩R 6= ∅, i.e. the problem intReg(Unary-Shuffled≡Stringε)
is decidable.

Proof. The language Unary-Shuffled≡Stringε is context-free, since for a
given word we only have to count the number of letters unequal to ε at the
even and at the odd positions in the word. If those numbers are equal, the
word is in Unary-Shuffled≡Stringε . This property can be checked by a de-
terministic pushdown automaton and hence the language is context-free. Since
the context-free languages are closed under intersection with regular languages
and have a decidable emptiness problem [HU69], the problem intReg(Unary-
Shuffled≡Stringε) is decidable, too.

The intReg problem becomes also decidable if we get rid of the shuffled
encoding. The following two problems have a decidable intReg problem as well.

Definition 12 (Sequential≡Stringε).
Given: A word w = s1s2 . . . sn$t1t2 . . . tn′ such that si, ti ∈ Σ ∪ {ε}.
Question: Is h(s1s2 . . . sn) = h(t1t2 . . . tn′) where h : (Σ ∪ {ε, $})∗ → (Σ ∪ {$})∗
is an erasing homomorphism which leaves all signs in Σ ∪ {$} unchanged and
deletes the ε-signs.

Theorem 8. Let R be a regular language. It is decidable whether
Sequential≡Stringε ∩R 6= ∅, i.e. the problem intReg(Sequential≡Stringε) is
decidable.

Proof. Let R be a regular language. Without loss of generality, we may assume
that R ⊆ L ((Σ ∪ {ε})∗ $ (Σ ∪ {ε})∗) 1. Let A = (Q,Σ ∪ {ε, $}, δ, q0, F ) be a
deterministic finite automaton with L(A) = R. We will provide a decision pro-
cedure for the question, whether R contains a word from Sequential≡Stringε

by splitting the automaton A in sub-automata accepting every sub-word before
the symbol $ and sub-automata accepting every sub-word after the symbol $.
We will then use the fact, that the class of regular languages is closed under
erasing-homomorphisms [HU69], to delete the ε-signs from the words of the
sub-automata and obtain regular languages, for which we then perform pairwise
intersection emptiness tests.

1The language Sequential≡Stringε is a subset of the regular language
L ((Σ ∪ {ε})∗ $ (Σ ∪ {ε})∗), hence we can narrow R to the intersection of R with
L ((Σ ∪ {ε})∗ $ (Σ ∪ {ε})∗).
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We define for every pair of states of the automaton A the set of sub-words,
which can be read before the $-sign, between which the $-sign can be read, and
which can be read after the $-sign.

Sq0,q := {w ∈ (Σ ∪ {ε})∗ | δ(q0, w) = q ∧ ∃q′ ∈ Q : δ(q, $) = q′}
$q,q′ := {$ | δ(q, $) = q′}
Tq,qf := {w ∈ (Σ ∪ {ε})∗ | δ(q, w) = qf ∧ qf ∈ F ∧ ∃q′ ∈ Q : δ(q′, $) = q}

Therefore, R can be written as R =
⋃
q,q′∈Q, qf∈F Sq0,q$q,q′Tq′,qf . Since A is

a deterministic finite automaton, there are only finitely many sets Sq0,q, $q,q′ ,
and Tq,qf and all of them are regular, since we easily can alter the automaton
A to obtain finite automata for each of those languages.

Let h : (Σ ∪ {ε, $})∗ → (Σ ∪ {$})∗ be a homomorphism mapping every
symbol form Σ ∪ {$} to itself and deleting the ε-signs. For every pair of states,
the languages h (Sq0,q), h ($q,q′), and h

(
Tq,qf

)
are regular. For two regular

languages the intersection emptiness problem is decidable, i.e. it is decidable,
whether both languages contain a common word [HU69].

We will now show that Sequential≡Stringε∩R 6= ∅ if and only
if there exists states q, q′, qf ∈ Q and a word v ∈ Σ∗ such that
v ∈ h (Sq0,q) ∧ $ ∈ h ($q,q′) ∧ v ∈ h

(
Tq′,qf

)
. Since there are only finitely many

states in Q, and the membership and intersection-emptiness problems for
regular languages are decidable, we can simply test the right-hand condition
for every combination of states to decide whether there exists a word v ∈ Σ∗

fulfilling the condition.

“⇒”: Let w ∈ Sequential≡Stringε∩R 6= ∅, then w is the label of an
accepting path in A. By definition, w is of the form w = u$u′ where the stings
u and u′ are equal if we delete the ε-signs in both strings. This means that
h(u) = h(u′). Since w labels an accepting path in A, there are states q, q′, qf
such that δ(q0, u) = q ∧ δ(q, $) = q′ ∧ δ(q′, u′) = qf ∧ qf ∈ F . Hence, there
exists sets Sq0,q, $q,q′ , and Tq,qf with u ∈ Sq0,q, $ ∈ $q,q′ , and u′ ∈ Tq,qf . Let

v = h(u), then v ∈ h (Sq0,q)∧$ ∈ h ($q,q′)∧v ∈ h
(
Tq′,qf

)
which was to be proven.

“⇐”: Let v ∈ Σ∗ be a word, such that there exist states q, q′, qf ∈ Q
with v ∈ h (Sq0,q) ∧ $ ∈ h ($q,q′) ∧ v ∈ h

(
Tq′,qf

)
. Let u ∈ (Sq0,q ∩ h−1 (v)),

$ ∈ ($q,q′ ∩ h−1 ($)), and u′ ∈
(
Tq′,qf ∩ h−1 (v)

)
. All three strings u, $, u′ exist

and are non-empty by assumption. Therefore, δ(q0, u) = q ∧ δ(q, $) = q′ ∧
δ(q′, u′) = qf ∧ qf ∈ F and u$u′ is the label of an accepting path in A.
Since u and u′ are equal when we delete the ε-signs, the word u$u′ is also in
Sequential≡Stringε .
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Definition 13 (Unary-Sequential≡Stringε).
Given: A word w = s1s2 . . . sn$t1t2 . . . tn′ such that si, ti ∈ Σ∪{ε} with |Σ| = 1.
Question: Is h(s1s2 . . . sn) = h(t1t2 . . . tn′) where h : (Σ ∪ {ε, $})∗ → (Σ ∪ {$})∗
is an erasing homomorphism which leaves all signs in Σ ∪ {$} unchanged and
deletes the ε-signs.

Corollary 1. Let R be a regular language. It is decidable whether
Unary-Sequential≡Stringε∩R 6= ∅, i.e. the problem intReg(Unary-
Sequential≡Stringε) is decidable.

Proof. Since the problem is already decidable for an arbitrary alphabet, it is
also decidable for a unary alphabet.

3.4 Open Questions

We have shown that the problem of Shuffled≡RegEx has an undecidable
intReg-problem. We do not know the decidability of the intReg-problem for
the following problems, which are defined similarly to the variations of the
≡Stringε-problems.

• Sequential≡RegEx

• Unary-Shuffled≡RegEx

• Unary-Sequential≡RegEx

For the problem of Sequential≡RegEx the reduction from PCP fails
because we can not describe the set of all eventual solutions of the PCP-
instance by a regular set of regular expressions. The corresponding list-items in
one possible solution are arbitrarily far apart from each other, because the two
regular expressions are not in a shuffled but sequential encoding. Therefore,
the relation between the corresponding list elements can no longer be generated
by a regular expression, even if we allow padding ε-signs.

For the problems Unary-Shuffled≡RegEx and Unary-
Sequential≡RegEx the reduction from PCP fails to prove undecidability
of the intReg-problem because the PCP-problem over unary alphabets is
decidable [RW03].

At the attempt to prove decidability of the intReg-problem for the above
listed problems, we have to deal with the fact that we can not restrict the given
regular language to a regular language, which only contains correctly encoded
problem instances, as we can do in all cases of proven intReg decidability.
Allowing operators like union and star in the regular expressions automatically
brings brackets to the regular expressions and therefore the language of all
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correctly encoded regular expressions is no longer a regular set. The fact, that
we can not restrict the given regular language R to a regular language of a
known shape, containing the interesting subset of R, makes using pumping
arguments, like presented in the next chapters, difficult.

Finally, in Table 3.1 we sum up the above proven decidability results of
the intReg-problem for several variations of the Equivalence of Regular
Expressions-problem.

Table 3.1: Decidability of the intReg-problem for regular expression and string
equivalence.

≡RegEx ≡Stringε

Σ Shuffled Sequential Shuffled Sequential

N-ary undecidable ? undecidable decidable
Unary ? ? decidable decidable



Chapter 4

True Quantified Boolean
Formula

This chapter includes the article “Deciding Regular Intersection Emptiness of
Complete Problems for PSPACE and the Polynomial Hierarchy” [GKLW18],
which was a collaboration of the author together with Demen Güler, Andreas
Krebs, and Klaus-Jörn Lange. The presented construction of a so called
automaton condensed(A) is here given in detail and will be adapted to other
problems in the following chapters. The present chapter differs from the
original article by additional notes and comments.

In this chapter we investigate the decidability of the intReg-problem for dif-
ferent languages of true quantified Boolean formulae. Arbitrary true quantified
Boolean formulae generate a PSPACE-complete language, where constraining
quantification depth and order yields complete-languages for the classes of
the polynomial hierarchy. We show for ΣP

k -, ΠP
k - and respectively PSPACE-

complete languages LΣk , LΠk and LTQBF that intReg(LΣk), intReg(LΠk) and
intReg(LTQBF) are decidable. We adopt an encoding for QBFs that only dif-
ferentiates from the commonly used notation by omitting explicit quantifiers.
Instead, literals carry information about their quantification depth as a unary
string.

A converse viewpoint of this problem is to consider a regular set of encoded
quantified Boolean formulae and to decide whether at least one does evaluate
to true. For finite sets this problem is, from a decidability perspective, trivial,
since each quantified Boolean formula can be evaluated by a Turing machine
with a polynomial space bound. On the contrary, the question whether an
arbitrary (not necessarily regular) infinite set contains a true quantified Boolean
formula is not per se decidable. In our proof we make use of the finiteness
of the state set of finite automata which assure us the repetitions of certain
sub-words in words accepted by the automaton. This way, we are able to reduce

21
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the set of possibilities to a finite number of candidates, when we search for true
quantified Boolean formulae in infinite regular sets.

The chapter is structured as follows: We start with preliminaries and define
the complete problems we need. The main results are listed in Section 4.2,
where a short overview of the proof ideas are given. The detailed elaboration
of the proofs is content of Section 4.3 and 4.4. Finally, in the last section we
discuss our results and list some open problems.

4.1 Preliminaries

We use the common notation for Boolean formulae with 0 and 1 as truth
values. For readability reasons, we extend regular expressions by operations
E≤n := (E|E2| · · · |En) and E≥n := EnE∗ for a fixed n ∈ N and E a
regular expression. In particular, we write E≥1 instead of E+ because
signs are part of the alphabet we use. For w ∈ Γ∗ and γ ∈ Γ let #γ(w)
denote the number of γs in w. Existentially and universally quantifying a
propositional formula with Boolean values yields a quantified Boolean formula:
Q1~x 1Q2~x 2 . . .Qk~x k φ(~x 1, ~x 2, . . . , ~x k), where Qi ∈ {∃,∀} with Qi 6= Qi+1 and
~x i are finite vectors of Boolean variables and φ is a propositional Boolean
formula with

∑k
i=1|~xi| free variables.

Wrathall [Wra76] showed that true quantified Boolean formulae with k
alternating quantifiers and suitable propositional structure yield complete
languages for the k-th level of the polynomial hierarchy. The shape of the
propositional formula depends on the innermost quantifier. If the innermost
quantifier is existential (universal), it is in conjunctive (disjunctive) normal
form. The set of true quantified Boolean formulae with k alternating quantifiers,
where Q1 = ∃ (Q1 = ∀), is complete for ΣP

k (ΠP
k ). If the propositional formula

is kept in CNF regardless of the innermost quantifier, then for each odd (even) k
and Q1 = ∃ (Q1 = ∀) the true quantified formulae with k alternating quantifiers
yield ΣP

k (ΠP
k )-complete language. If the number of quantifier alternations in

formulae is not bounded the set of true quantified Boolean formulae yields the
PSPACE-complete set TQBF [SM73].

Thoughout the article we will describe regular sets of quantified Boolean for-
mulae. The typical representation of quantified Boolean formulae is not regular.
We will use a natural encoding (similar to Stockmeyer [Sto76]) of quantified
Boolean formulae, where literals ±b∗a∗ contain three kinds of information: A
sign will indicate whether the variable is negated or not, followed by a factor b∗

which indicates the quantification depth and the name or index of the variable
used in this literal as suffix in a∗.

Odd length quantification levels denote that variables are existentially
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quantified and analogously even levels that they are universally quantified.
Also, we will assume the propositional structure to be in 3-CNF.

Example 1. Consider following quantified Boolean formula ψ1 over the variable
set ~x1 = (x1,1, x1,2), ~x2 = (x2,1, x2,2) and ~x3 = (x3,1, x3,2).

ψ1 = ∃~x1∀~x2∃~x3 (x1,1 ∨ ¬x1,2 ∨ ¬x2,1) ∧ (x3,1 ∨ x2,2 ∨ x1,2) ∧ (¬x3,2 ∨ x1,1 ∨ ¬x2,1)

The encoding of ψ1 then reads

〈+ba ∨ −baa ∨ −bba〉 ∧ 〈+bbba ∨+bbaa ∨+baa〉 ∧ 〈−bbbaa ∨+ba ∨ −bba〉 .

The Boolean vectors of variables are not necessarily indexed by successive
numbers.

ψ2 = ∃~x1∀~x4∃~x5 (x1,1 ∨ ¬x1,2 ∨ ¬x4,1) ∧ (x5,1 ∨ x4,2 ∨ x1,2) ∧ (¬x5,2 ∨ x1,1 ∨ ¬x2,1) ,

where the Boolean vectors are ~x1 = (x1,1, x1,2), ~x4 = (x4,1, x4,2), ~x5 = (x5,1, x5,2)
and thus, ψ1 ' ψ2 since ψ2 is a (partial) renaming of ψ1. The encoding of ψ2

then is

〈+ba ∨ −baa ∨ −b4a〉 ∧ 〈+b5a ∨+b4aa ∨+baa〉 ∧ 〈−b5aa ∨+ba ∨ −bba〉 .

The Boolean vectors of variables are not necessarily indexed by successive
numbers. If two consecutive vectors are both indexed odd/even they will be
quantified identically. Let ψ with range over ~x1 = (x1,1), ~x3 = (x3,2, x3,4),
~x4 = (x4,2) and ~x8 = (x8,1, x8,2) be

∃~x1∃~x3∀~x4∀~x8(x1,1 ∨ x8,1 ∨ x3,2) ∧ (x3,4 ∨ x4,2 ∨ ¬x4,2) ∧ (¬x3,4 ∨ x8,2 ∨ x3,4)

Then the encoding of ψ reads

〈+ba ∨+b8a ∨+b3aa〉 ∧ 〈+b3a4 ∨+b4aa ∨ −b4aa〉 ∧ 〈−b3a4 ∨+b8aa ∨+b3a4〉

Definition 14. Let Γ = {a, b, 〈, 〉,∧,∨,+,−} and ± be the regular expression
of {+,−}. As the regular set of sequential encoded quantified Boolean formulae
in 3-CNF we define Lk-QBF :={
〈±b≤ka≥1 ∨ ±b≤ka≥1 ∨ ±b≤ka≥1〉

(
∧〈±b≤ka≥1 ∨ ±b≤ka≥1 ∨ ±b≤ka≥1〉

)∗}
Furthermore, let LQBF :=

⋃
k≥1 Lk-QBF be the set of encoded quantified Boolean

formulae without bound of quantifier alternation depth.

Remark 1. The results presented also work for some slightly modified encodings.
For example, variables and quantification depth could be encoded in binary (as
Stockmeyer [Sto76] does) and arbitrary but fixed clause sizes could be allowed.
We could also get rid of the brackets or encode signs inside variable names.
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Definition 15. Let LΣk (LΠk) ⊆ Lk-QBF be the set of all true quantified
Boolean formulae in sequential encoding and 3-CNF where the first quantifier
is existential (universal).

Let Lk-TQBF := LΣk ∪ LΠk and LTQBF :=
⋃
k≥1 Lk-TQBF.

Fact 2. For odd (even) k, the language LΣk (LΠk) is ΣP
k

(
ΠP
k

)
-

complete [Wra76]. The set LTQBF ⊆ LQBF of encoded true quantified Boolean
formulae in 3-CNF is PSPACE-complete [SM73].

4.2 Results

In this section we present our two main theorems for the ΣP
k -complete language

LΣk , the ΠP
k -complete language LΠk and the PSPACE-complete language

LTQBF.

Theorem 9. Let R be a regular language. For each k ∈ N it is decidable
whether LΣk ∩ R = ∅ and LΠk ∩ R = ∅, i.e. intReg (LΣk) and intReg (LΠk) are
decidable.

The next paragraph sketches the proof. The formal proof of Theorem 9 is
content of Section 4.3.

Let A be a DFA recognizing R. We can use the structure of A to identify
the finitely many ”most promising“ words in R under which a true quantified
Boolean formula is contained, if and only if there is one in the language
R. To do so, for every pair of states in A we compute the (possibly empty)
regular set of end-to-end literals that can be read in-between them. Each
such literal set is then assigned a finite set of representing literals in a way
that universally quantified literals are referencing the same variable, while
existentially quantified literals are referencing different variables. We define
an automaton condense(A) based on the finitely many representatives and
show that condense(A) recognizes a true quantified Boolean formula if and
only if A accepts one. Finally, we show that for each k ∈ N the emptiness of
condense(A) ∩ LΣk and condense(A) ∩ LΠk is decidable, which in total proves
Theorem 9.

Theorem 10. Let R be a regular language. It is decidable whether LTQBF ∩R =
∅, i.e. intReg (LTQBF) is decidable.

Again, we will give a brief overview of the proof idea here and prove
Theorem 10 in Section 4.4.

Let R be given as a DFA A. Formulae recognized by A can be unbounded
in their quantification depth. Using pumping arguments, we can find a constant
d limiting the quantification depth of ”interesting formulae“, where d is only
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dependent on the size of A. We construct a new automaton restrict(A) which
only accepts formulae of quantification depth up to d and we show that A
accepts a true quantified Boolean formula if and only if restrict(A) accepts
one. Following Theorem 9 it is decidable whether L(restrict(A)) contains a
true quantified Boolean formula with at most d alternating quantifiers and thus
LTQBF ∩R = ∅ is decidable, too.

4.3 Decidability of intReg for Problems in the

Polynomial Hierarchy

Let R ⊆ Lk-QBF be a regular language. If R is finite, checking whether R
contains at least one true quantified Boolean formula can be achieved by
decoding and evaluating every single word in R.

For infinite R this procedure is obviously not possible. Instead, we will
show that we only have to test finitely many quantified Boolean formulae in R
for each (infinite) regular language to decide the intersection emptiness with
LΣk/LΠk .

The idea is to extract from R a finite subset {w1, . . . , wn} ⊆ R such that
R ∩ LΣk 6= ∅ if and only if wi ∈ LΣk for some i. In order to do so, we look in a
word x ∧ 〈l1 ∨ l2 ∨ l3〉 ∧ y ∈ R for literals li which are existentially quantified
and make following case distinction. If the finite automaton A accepting R has
a loop while reading li, we can single out a uniquely referenced variable for li.
Thus, li can be existentially satisfied without effecting other literals/clauses.
Otherwise, if A has no loop while reading li leading from some state q to some
state q′, we conclude that there can only exist finitely many different literals
l′ leading from q to q′. All of these are put (after some massage) in a set
rep(Λq,q′) for joint treatment of all rep(Λq,q′). The case of universally quantified
literals needs more care. For every pair (q, q′) of states in A we compute a
set Λq,q′ of literals leading from q to q′. From the powerset of all Λ sets we
identify combinations of Λ sets, sharing a common variable, which is chosen as
a representative. Therefore, wherever possible the same universally quantified
variable can be referenced, reducing the total number of different universally
quantified variables in the formula.

4.3.1 Construction of the condensed automaton

We will first define for every pair of states the set of literals which can be read
in between those states.

Definition 16. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ Lk-QBF. For every pair of states q, q′ ∈ Q, s ∈ {+,−} and
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1 ≤ d ≤ k we define

Λd,s
q,q′ :=

{
w ∈ L

(
(〈|ε)sbda≥1(∨|〉)

)
| δ∗(q, w) = q′

}
,

the literal transition set from q to q′ with sign s and quantifier depth d.
Furthermore, let

Λq,q′ :=
⋃

s∈{+,−},1≤d≤k

Λd,s
q,q′

be the union of all literal transition sets from q to q′. For easier readability, we
will sometimes refer to Λd,s

q,q′ as Λ if d, s and q, q′ are understood.

Each Λ is recognized by a sub-automaton of A and therefore is a regular set.

Since we have to treat existentially and universally quantified literals differ-
ently, we put the universally ones in an extra set.

Definition 17. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton

with L(A) ⊆ Lk-QBF. Let Υd :=
{

Λd,s
q,q′ | q, q′ ∈ Q, s ∈ {+,−}

}
be the set

containing all universally quantified literal transition sets with quantifier depth
d, for all even d with 1 ≤ d ≤ k.

Definition 18. Let trunc : Γ = {a, b, 〈, 〉,+,−,∨,∧}∗ → {a, b}∗ be an homo-
morphism with

trunc(γ) :=

{
γ if γ ∈ {a, b},
ε otherwise.

Define the operation extend such that extend(w,Λ) := trunc−1(w) ∩ Λ for
w ∈ trunc(Λ) and language Λ .

Intuitively, function trunc returns the variable referenced by a literal for-
getting its sign and its position in a clause, while extend provides us with all
possible occurrences of a variable as a literal leading from state q to state q′.

Definition 19. Let P d :=
{
p ∈ P

(
Υd
)
| ∩Λ∈ptrunc(Λ) 6= ∅

}
for all even d

with 1 ≤ d ≤ k be the subset of the powerset of all literal transition sets
with quantifier depth d which only contains sets of languages with a common
variable.

The sets P d consists of all combinations of universally quantified literal
transition sets with quantifier depth d which share a common variable. This
means that for all corresponding pairs of states we can read literals in between
the two states referencing the same variable. Note that for every p ∈ P d all
subsets of p are also contained in P d.

In the following, we construct for each Λ a finite set rep(Λ) ⊆ Λ of rep-
resentatives which will carry the essential information whether the language
contains a true quantified Boolean formula.
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Definition 20. For a language L ⊆ Γ∗ let min
lex

(L) denote the lexicographically

minimal element of L.

Since an existentially quantified variable which only occurs once in a quanti-
fied Boolean formula can always be satisfied, we try to separate all existentially
quantified variables when assigning representatives to each literal transition
set. Conversely, having many different universally quantified variables makes a
quantified Boolean formula harder to be true. The elements in P d state which
literal transition sets contain universally quantified literals, which can reference
the same variable. Intuitively, the set of representatives rep(Λ) enumerate the
finitely many “interesting” literals of Λ.

Definition 21. For every Λd,s
q,q′ we define a finite set of representatives rep(Λd,s

q,q′)
with the following case distinction:

1. If d is even (universally quantified) use Algorithm 1 to compute the
representatives of Λd,s

q,q′ .

Algorithm 1 Computation of rep(Λ) for even d.

for all Λ ∈ Υd do
rep(Λ)← ∅

end for
for all p ∈ P d do

label(p)← min
lex

(⋂
Λ∈p trunc(Λ)

)
for all Λ ∈ p do

rep(Λ)← rep(Λ) ∪ extend(label(p),Λ)
end for

end for

2. If d is odd (existentially quantified) and |Λd,s
q,q′| < ∞, then rep(Λd,s

q,q′) =

Λd,s
q,q′ .

3. If d is odd (existentially quantified) and |Λd,s
q,q′| = ∞, then rep(Λd,s

q,q′) =

extend(bdal,Λd,s
q,q′), such that the truncated bdal is in no other set of

representatives for any Λd′,s′

p,p′ , with p, p′ ∈ Q, quantifier depth d′ and sign
s′.

In the first loop of Algorithm 1 we initialize all sets of representatives with
the empty set. In the second loop we choose for every combination of literals
transition sets sharing a variable the lexicographically smallest common variable
and add for every involved Λ all literals in Λ which reference the picked variable
to the set of representatives of Λ. Since we do so for every combination of Λ
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in P d the set of representatives of Λ can contain multiple but finitely many
elements. Since for all Λ ∈ Υ the set {Λ} is in P d, every literal transition set
will get at least one representative.

Remark 2. The lexicographic minimal element of each p ∈ P d is chosen to
make the algorithm deterministic. Any other element of

⋂
Λ∈p trunc(Λ) could

be picked as possible label.

Let us consider an example computation for literal transition sets and
representatives.

Example 2. Let Asub be a subgraph of an automaton recognizing a regular
language R ⊆ L3-QBF illustrated as extended automaton [Pin10] shown in
Figure 4.1. We give an example computation of the literal transition sets

q1

q3 q4

q2

q6

q5

q7

+b3

a2a3

∨

a

a∨

−b2

a

a∨

a2∨ a2

a2a

a∨

a a4

Figure 4.1: Subgraph Asub of a finite automaton recognizing a factor of a
regular language R ⊆ L3-QBF. Dotted transitions, which are labeled with words
over Γ, use extra states that are omitted here.

(Definition 16) and respective representatives (Definition 21) for pairs of states
{q1, q2}×{q3, q4, q5, q6, q7} in Asub, as all other pairs yield empty literal transition
sets and representatives. The non-empty literal transition sets of Asub are:

Λ2,−
q2,q5

= {−b2a2∨}

Λ2,−
q2,q6

= {−b2a(a4)
i
a∨ | i ≥ 0}

Λ2,−
q2,q7

= {−b2a4(a3)
i
a∨ | i ≥ 0}

Λ3,+
q1,q3

= {+b3a2∨,+b3a3∨}
Λ3,+
q1,q4

= {+b3aaia∨ | i ≥ 0}

The only universal quantification level for R ⊆ L3-QBF is d = 2. Table 4.1 shows
the elements of P 2 and their respective labels. This yields representatives for
Λ2,−
q2,q5

, Λ2,−
q2,q6

and Λ2,−
q2,q7

. The literal transition set Λ3,+
q1,q3

has an odd quantification
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Table 4.1: Elements of P 2 with their corresponding sets of labels for Asub.

pi ∈ P 2 Contained Λs label(pi)

p1 {Λ2,−
q2,q5
} b2a2

p2 {Λ2,−
q2,q6
} b2a2

p3 {Λ2,−
q2,q7
} b2a5

p4 {Λ2,−
q2,q5

,Λ2,−
q2,q6
} b2a2

p5 {Λ2,−
q2,q6

,Λ2,−
q2,q7
} b2a14

level and is finite. Thus, rep(Λ3,+
q1,q3

) = Λ3,+
q1,q3

= {+b3a3∨,+b3a2∨}. The only
infinite Λ with odd quantification level is Λ3,+

q1,q4
, for which we pick an arbitrary

unique e ∈ Λ3,+
q1,q4

as representative. Table 4.2 lists all transitioning sets with
their representatives.

Table 4.2: Literal transition sets of Asub with corresponding sets of representa-
tives.

Literal transitioning rep(Λ)

Λ2,−
q2,q5

= {−b2a2∨} {−b2a2∨}
Λ2,−
q2,q6

= {−b2a(a4)
i
a∨ | i ≥ 0} {−b2a2∨,−b2a14∨}

Λ2,−
q2,q7

= {−b2a4(a3)
i
a∨ | i ≥ 0} {−b2a5 or,−b2a14∨}

Λ3,+
q1,q3

= {+b3a3∨,+b3a2∨} {+b3a3∨,+b3a2∨}
Λ3,+
q1,q4

= {+b3aaia∨ | i ≥ 0} {+b3a42∨}

Lemma 1. For all q, q′ ∈ Q, quantifier depth d ≤ k and s ∈ {+,−} the set
rep(Λd,s

q,q′) is finite.

Proof. For odd d the claim is easily verified. So, assume d to be even. The
set Υd is finite since d is bounded by k, Q is finite and s can only assume two
values. Hence, the powerset P

(
Υd
)

is finite and therefore P d is finite, too. Each
p ∈ P d has exactly one label. So, for finitely many p, finitely many elements
are added to rep(Λ) for any Λ. Hence, rep(Λ) is finite for any Λ ∈ Υd.

We now want to construct the new automaton condense(A) based on the
sets of representatives of the original automaton A. We will then have to
test only finitely many words accepted by condense(A), under which a true
quantified Boolean formula will be contained, if and only if there is one in the
original language R.

Definition 22. For q, q′ ∈ Q let

rep(Λq,q′) :=
⋃

s∈{+,−},d≤k

rep
(

Λd,s
q,q′

)
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be the set of representatives from q to q′ of arbitrary quantification and sign s.

Definition 23. Based on literal transition sets (see Definition 16), we define
for every q, q′ ∈ Q clause transition sets

Cq,q′ :=
⋃

q1,q2∈Q,Λq,q1 6=∅,Λq1,q2 6=∅,Λq2,q′ 6=∅

rep(Λq,q1) · rep(Λq1,q2) · rep(Λq2q′) ,

where we require that all words in Λq,q1 start with 〈, the words in Λq1,q2 contain
neither 〈 nor 〉, and the words in Λq2,q′ end with 〉.

Lemma 2. For every q, q′ ∈ Q the clause transition set Cq,q′ is finite.

Proof. For every q, q′ ∈ Q the set of representatives rep(Λq,q′) is finite, and
hence finite concatenation yields again a finite set.

Definition 24. Let R ⊆ Lk-QBF be a regular language and A = (Q,Γ, δ, q0, F )
be a DFA with L(A) = R. Define the condensed automaton condense(A) =
(Q,Γ′, δ′, q0, F ) where

Γ′ =
⋃

q,q′∈Q

Cq,q′ ∪ {∧}

and ∀q, q′ ∈ Q : (q, w, q′) ∈ δ′ if w ∈ Cq,q′
∀q, q′ ∈ Q : (q,∧, q′) ∈ δ′ if (q,∧, q′) ∈ δ .

The automaton condense(A) accepts a subset of L(A) such that the words
in L(condense(A)) are built over a finite set of clauses.
The next section shows that L(A) ∩ LΣk 6= ∅ ⇐⇒ L(condense(A)) ∩ LΣk 6= ∅.
Thus, we can decide the emptiness of the intersection by inspecting the finitely
many elements which are accepted by loop-free paths in condense(A) one-by-
one.

4.3.2 Condensation preserves regular intersection non-
emptiness

Lemma 3. Let R ⊆ Lk-QBF be a regular language and A be a DFA with
L(A) = R. If L(condense(A)) ∩ Lk-TQBF 6= ∅ then also R ∩ Lk-TQBF 6= ∅.

Proof. The condensed automaton condense(A) recognizes a subset of R. In
particular, every recognized true quantified Boolean formula w, is also in R.

Lemma 4. Let R ⊆ Lk-QBF be a regular language and A be a DFA with
L(A) = R. If R ∩ Lk-TQBF 6= ∅ then also L(condense(A)) ∩ Lk-TQBF 6= ∅.
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Proof. The idea of the proof is the following: Let w ∈ R evaluate to true.
Every literal of w is part of some Λ. Each one can be substituted by a
representative in rep(Λ), making a case distinction between existential and
universal quantification, yielding a word in L(condese(A)) which is also true.
Now, we will go through the proof in detail:
Let w ∈ R be a true quantified Boolean formula (w ∈ Lk-TQBF). Then w can
be split up into factors of the form

w = w0w1w2 ∧ w3w4w5 ∧ · · · ∧ wn−2wn−1wn

with the properties wi ∈ Λqi,qi+1
for i 6≡ 0 mod 3, wi ∈ Λq′i,qi+1

and δ(qi,∧) = q′i
for i ≡ 0 mod 3, i > 0 for all i < n. Furthermore, w0 ∈ Λq0,q1 and wn ∈ Λqn,qf

for some final state qf ∈ F .

Then, there is a w′ ∈ L(condense(A)) which can be partitioned with
analogous properties into w′ = w′0w

′
1w
′
2 ∧ w′3w′4w′5 ∧ · · · ∧ w′n−2w

′
n−1w

′
n and

wi ∈ Λqi,qi+1
⇒ w′i ∈ rep(Λqi,qi+1

). To show that there is a true quantified w′ of
such a form we will do a case differentiation of the type of Λqi,qi+1

.

1. If Λqi,qi+1
is finite and existentially quantified, then rep(Λqi,qi+1

) = Λqi,qi+1
.

So, we can pick w′i = wi ∈ rep(Λqi,qi+1
).

2. If Λqi,qi+1
is infinite and existentially quantified, then w′i ∈ Λqi,qi+1

can be
picked such that its variable is not referenced by any other literal in w′.
Since it is independent and existentially quantified w′i is equivalent to the
Boolean constant 1. Thus, the whole clause w′i can be viewed as constant
1.

3. If Λqi,qi+1
is universally quantified we have to consider which other literals

wj ∈ Λqj ,qj+1
references the same variable as wi. Let J := {1 ≤ j ≤

n | trunc(wj) = trunc(wi)} be the index set of all literals encoding
the same variable as wi. The collection of these literal transition sets
pi := {Λqj ,qj+1

| j ∈ J} is in P#b(wi) because the intersection of the literal
sets is, as observed, non-empty. By construction, rep(Λqi,qi+1

) and all
other rep(Λqj ,qj+1

) for j ∈ J received a label from pi. Picking w′i and w′j
for all j ∈ J as the label given by pi will yield a consistent renaming of
the literal wi and thus not change the evaluation of w′.

Thus, substituting each wi by the respective w′i yields a true quantified Boolean
formula w′ ∈ L(condense(A)) which proves this lemma.

4.3.3 Deciding intReg(LΣk
) and intReg(LΠk

)

We now show that it is decidable whether condense(A) accepts a true quantified
Boolean formula.
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Lemma 5. Let A be a DFA with L(A) ⊆ Lk-QBF and w ∈ L(condense(A))
where w is the labeling of an accepting path p in condense(A) containing at
least one loop. Let w′ be w without the factors read in the loops of p. If w is a
true quantified Boolean formula, then so is w′.

Proof. The formula w is in conjunctive form w = c1∧· · ·∧ cn with some clauses
ci which all evaluate to true. Loops only contain whole clauses and thus w′

consists of a subset of the clauses of w. Thus, w′ also evaluates to true.

This means that words recognized through simple accepting paths in the
condensed automaton are the only ones that need consideration when looking
for true quantified Boolean formulae.

Lemma 6. Let R be a regular language and A be a DFA with L(A) = R. It is
decidable whether L(condense(A)) ∩ LΣk 6= ∅ and L(condense(A)) ∩ LΠk 6= ∅.

Proof. Let R ⊆ Lk-QBF w.l.o.g. enumerate all words w1, w2, . . . , wn which are
recognized through (the finitely many) simple accepting paths in condense(A).
For i = 1, . . . , n test if wi is a true quantified Boolean formula. Following
Lemma 5, if all wi evaluate to false, no other w ∈ L(condense(A)) can evaluate
to true. Thus, the intersection L(condense(A)) ∩ LΣk is non-empty if and only
if at least one wi evaluates to true and the first quantifier in wi is existential.
Analogously, L(condense(A)) ∩ LΠk 6= ∅ if and only if at least one wi evaluates
to true and the first quantifier in wi is universal.

In total, this yields Theorem 9.

Theorem 1. Let R be a regular language. For each k ∈ N it is decidable
whether LΣk ∩ R = ∅ and LΠk ∩ R = ∅, i.e. intReg (LΣk) and intReg (LΠk) are
decidable.

Proof. Assume w.l.o.g. that R ⊆ Lk-QBF. Let A be a DFA recognizing R.
Lemma 6 states that condense(A) ∩ LΣk 6= ∅ and condense(A) ∩ LΠk 6= ∅ is
decidable. Following Lemma 3 and Lemma 4 L(condense(A)) ∩ Lk-TQBF 6=
∅ ⇐⇒ R ∩ Lk-TQBF 6= ∅. Thus, both LΣk ∩ R = ∅ and LΠk ∩ R = ∅ is
decidable.

4.4 Decidability of intReg(TQBF)

In this section we prove Theorem 10, stating that intReg (LTQBF) is decidable.
That is, one can test whether a regular language encoding quantified Boolean
formulae with unbounded quantifier alternation contains at least one true quan-
tified Boolean formula. Observe that the automaton condense(A) constructed
in the last subsection to test for (non)emptiness of R ∩ LΣk is dependent in k.
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We now give a construction which allows us to use the condense(A)-automaton
despite the presence of unboundedly nested quantifiers.

Fact 3. Let ~x 1 and ~x 2 be vectors of Boolean variables and φ be a propositional
Boolean formula with |~x 1|+ |~x 2| free variables. Then, the following implications
holds:

1. ∃~x 1∀~x 2φ(~x 1, ~x 2)⇒ ∀~x 2∃~x 1φ(~x 1, ~x 2)

2. ∀~x 1φ(~x 1)⇒ ∃~x 1φ(~x 1)

3. Let Q be fixed as ∃ or ∀. Then Q~x 1Q~x 2φ(~x 1, ~x 2)⇒ Q~x 2Q~x 1φ(~x 1, ~x 2)

Fact 3 intuitively speaking states that we can “pull out” universal quantifiers.
Furthermore, we can substitute universal quantifiers by existential ones and
permute consecutive vectors quantified by the same type of quantifier without
falsifying the formula.

4.4.1 Defining the reduction

For a given DFA A we construct a new automaton restrict(A) which accepts a
true quantified Boolean formula if and only if A does. Depending on the size of A
there is constant d such that formulae in L(restrict(A)) have at most d+2 (and
therefore finitely many) quantifier alternations. Words of L(restrict(A)) have
the property that quantifier levels of literals above a threshold d are summed
up in a sequence of universal quantifier levels, followed by a non-overlapping
sequence of existentially quantified levels. This is done by pumping the b-strings
of literals in a way that existential quantifiers are shifted over universal ones,
separating the two kinds of quantifiers in two blocks of quantification depth
d+ 1 and d+ 2.

Definition 25. For a DFA A = (Q,Γ, δ, q0, F ) and s ∈ {+,−} let

Gs
q,q′ := {n ∈ N | ∃q1, q2 ∈ Q : δ(q1, s) = q ∧ δ∗(q, bn) = q′ ∧ δ(q′, a) = q2}

be the set of quantification depths we can use for s-signed literals starting in q
and passing q′ on the way.

If we are passing a loop while reading a quantification depth in Gs
q,q′ , we can

use pumping to read infinitely many different quantification depths between q
and q′.

Lemma 7. Let A = (Q,Γ, δ, q0, F ) be a DFA. For all q, q′ ∈ Q and s ∈ {+,−}
the following statement holds: If there exists n ∈ Gs

q,q′ with n ≥ |Q| and n ≡ 1
mod 2, then |Gs

q,q′ ∩ {i | i ≥ |Q| and i ≡ 1 mod 2}| =∞.
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Proof. Assume there exists such an n ≥ |Q|. This means δ∗(q, bn) = q′.
Following the pumping lemma for regular languages there is an m such that for
all i ∈ N : n+mi ∈ Gs

q,q′ . This does in particular hold for even i, represented as
2i′. If n ≡ 1 mod 2, we have that n+mi mod 2 = n+ 2mi′ mod 2 = n mod 2.
This means there are infinitely many odd numbers in Gs

q,q′ .

If the same even quantification level n with n ≥ 2|Q||Q| can be read in
different locations of an DFA A, a smaller, also even, quantification level n′

with n′ ≤ 2|Q||Q| can be read in the same locations.

Lemma 8. Let A = (Q,Γ, δ, q0, F ) be a DFA and Z ⊆ Q × Q. For all
(q, q′) ∈ Z and s ∈ {+,−} the following statement holds: If ∃n ∈

⋂
(q,q′)∈Z G

s
q,q′

with n ≥ 2|Q||Q| and n ≡ 0 mod 2, then ∃n′ ∈
⋂

(q,q′)∈Z G
s
q,q′ with n′ ≤ 2|Q||Q|

and n′ ≡ 0 mod 2.

Proof. Assume there exists n ∈
⋂

(q,q′)∈Z G
s
q,q′ with n ≥ 2|Q||Q| and n ≡ 0

mod 2. This means for every pair (q, q′) ∈ Z holds δ∗(q, bn) = q′. Since
n ≥ 2|Q||Q| ≥ |Q| there exists a q′′ ∈ Q for every pair (q, q′) ∈ Z with
δ∗(q, biq,q′ ) = q′′, δ∗(q′′, bjq,q′ ) = q′′, δ∗(q′′, bkq,q′ ) = q′, iq,q′ + jq,q′ + kq,q′ = n
and jq,q′ ≤ |Q|. So, the state q′′ is visited multiple times between q and q′.
Following the pumping lemma for regular languages δ∗(q, biq,q′+m·jq,q′+kq,q′ ) = q′

for every pair (q, q′) ∈ Z and integer m. This holds in particular for m = J :=∏
(q1,q2)∈Z,(q1,q2)6=(q,q′) jq1,q2 . So, every multiple of J := jq,q′ · J is the length of a

loop over q′′. Since J ≤ |Q||Q| we can omit loops labeled by b2J over q′′ until
we get a n′ ≤ 2|Q||Q| for which for all (q, q′) ∈ Z holds δ∗(q, bn

′
) = q′. For every

pair (q, q′) we are omitting loops of the same even length, hence n′ is even and
n′ ∈ Gs

q,q′ for all pairs (q, q′) ∈ Z.

Definition 26. For a DFA A = (Q,Γ, δ, q0, F ), let G4,sq,q′ := Gs
q,q′ ∩{i | i ≥ |Q|}

be the set of quantifier levels higher then |Q|. We will define the level of G4,sq,q′

algorithmically. We set counter← 2|Q||Q| + 1 in the beginning and compute
for each q, q′ ∈ Q and s ∈ {+,−} the level of a G4,sq,q′ in arbitrary, but fixed
order with Algorithm 2.

Algorithm 2 selects for every set G4,sq,q′ of quantification depths higher than
|Q| representative levels of the set. If there is any existential quantification level
in the set, then by Lemma 7 there are infinitely many and we can pick one level
above the threshold 2|Q||Q| + 1 as a representative. If there are no existential
quantification levels in the set, we have to pick all universal quantification levels
up to our threshold as representatives. Lemma 8 states that we can pump
every universal quantification level below the threshold. Algorithm 2 prefers
assigning existential quantification levels as representatives and shifting them
above the universal quantification levels according to Fact 3.



4.4. DECIDABILITY OF INTREG(TQBF) 35

Algorithm 2 Computing the level for G4,sq,q′ .

if G4,sq,q′ ∩ {i | i ≡ 1 mod 2} 6= ∅ then

level(G4,sq,q′ )← min
(
G4,sq,q′ ∩ {i | i is odd and i ≥ counter}

)
counter← level(G4,sq,q′ ) + 2

else
level(G4,sq,q′ )← G4,sq,q′ ∩ {i | i ≡ 0 mod 2 and |Q| ≤ i ≤ 2|Q||Q|}

end if

Definition 27. For a DFA A = (Q,Γ, δ, q0, F ) define restrict(A) as the au-
tomaton A′ = (Q′,Γ, δ′, q0, F ) with δ′ being the following modification of δ.
For each p, p′ ∈ Q remove each transition of the form δ(p, b) = p′. Instead, we
will introduce a path δ∗(q, bn) = q′ for each n ∈ Gs

q,q′ with n < |Q| using n− 1

supplementary states we add to Q′. Moreover, for each G4,sq,q′ we add additional

paths δ∗(q, bn) = q′ for each n ∈ level(G4,sq,q′ ).

In the restricting process we remove all b-transitions to get rid of b-loops.
Loop-free b-transitions are reintroduced in such a way, that the emptiness of
the intersection with LTQBF is not changed.

4.4.2 Correctness of the reduction

Lemma 9. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton. Then,
L(A) ∩ LTQBF 6= ∅ if and only if L(restrict(A)) ∩ LTQBF 6= ∅.

Proof. “⇒”: The idea is to use the pumping property to substitute universal
quantifiers by existential ones and shift the existential quantifiers to the
end, while we conflate the unbounded universal quantifiers to a finite block.
Renaming the variables yields a word in L(restrict(A)).

Assume L(A)∩LTQBF 6= ∅. Then, there is some w ∈ L(A) with w ∈ LTQBF.
Removing parenthesis and logical operators from w we are left with a sequence
of ±b≥1a≥1 blocks s1b

β1aα1 . . . s3nb
β3naα3n . For each literal lit i := sib

βiaβi with
βi ≥ |Q| consider the states qi, q

′
i ∈ Q in which between bβi is read.

1. For odd βi there is, following Lemma 7, an odd β′i larger then any βj for
j = 1, . . . , 3n. We substitute liti by sib

β′iaαi in w.

2. If βi is even and G4,sq,q′ contains an odd number o ∈ {|Q|, . . . , 2|Q|}, we
use the same lemma as before and pump up the b-sequence to an odd
β′i ∈ Gs

q,q′ larger then any previous βj (or β′j) for j = 1, . . . , 3n. By this
we change the quantification of liti from universal to existential and make
it the last quantified literal.
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3. If there is no such odd number o and βi ≤ 2|Q||Q|, we leave sib
βiaβi as it

is.

4. If there is no such odd number o and βi > 2|Q||Q|, we identify all pairs
(q, q′) ∈ Q × Q in between βi can be read and obtain by Lemma 8 a

β′i ≤ 2|Q||Q| with δ∗(q, bβ
′
i) = q′ for all such pairs (q, q′). We substitute

liti by sib
β′iaαi in w.

After doing these substitutions, we are left with a new word w′ which is
still in L(A) and, following Fact 3, still is a true quantified Boolean formula.
In essence, we use the pumping property to substitute universal quantifiers
by existential ones and shift the existential quantifiers to the end, while we
conflate the unbounded universal quantifiers to a finite block, yielding the
same structure the words in L(restrict(A)) have. By renaming these vari-
ables into the scheme shown in Definition 26 we obtain a word in L(restrict(A)).

“⇐”: By construction L(restrict(A)) is a proper subset of L(A). Thus, any
w encoding a true quantified Boolean formula is also in L(A).

4.4.3 Deciding intReg(LTQBF)

Theorem 2. Let R be a regular language. Then R ∩ LTQBF = ∅ is decidable.

Proof. Let A be the finite automaton recognizing R and let k be the length of
the longest b-factor along an accepting path of restrict(A). Following Theorem 9
it is decidable whether L(restrict(A)) ∩ Lk-TQBF = ∅. Lemma 9 states that
L(restrict(A)) contains an encoded true quantified Boolean formula if and only
if L(A) does. Hence, L(A)∩LTQBF = ∅ if and only if L(restrict(A))∩LΣk = ∅
and L(restrict(A)) ∩ LΠk = ∅. Since the intersection is non-empty if and only
if restrict(A) accepts a true quantified formula, the latter is also decidable.



Chapter 5

Integer Linear Programming

In this chapter we will investigate the NP-complete problem Integer Linear
Programming (short ILP). We will adapt the techniques from the previous
chapter to show that the emptiness of the intersection of ILP with a regular
language is decidable. This chapter is divided into three parts. In the first
section we will construct a condensed automaton condensed(A) for a given
finite automaton A. In the next section we will show that L(condensed(A))
contains a solvable ILP if and only if L(A) does. In the last section we
will show that it is decidable whether L(condensed(A)) contains a solvable ILP.

We first want to define the problem of integer linear programming. While
the standard-form of ILP varies in the fields of science, we refer to the definition
in Computational Complexity from K. Wagner and G. Wechsung [WW89] where
this problem is called LIQ. We will refer to the described problem as ILP.

Definition 28 (ILP).
Given: Finite set A of pairs (~α, β) where ~α is an m-tuple of integers and β is
an integer.
Question: Is there an m-tuple ~x of integers such that ~α·~x ≤ β for all (~α, β) ∈ A?

Fact 4. The problem ILP is NP-complete if we ask for solutions in Z [WW89].

The problem will be encoded in the following way. The whole set A will be
encoded in one word. For each pair (~α, β) the elements of ~α are unary encoded
over the symbol a while β will be unary encoded over b. Each positive integer
will be preceded with a + while each negative integer will be preceded with a
−. The integers of α will be separated form β by a ≤ symbol.
So, every encoded instance of ILP will be a member of the language Lenc

defined as follows.

Definition 29. We define the set of all encoded ILPs, regardless if they are
solvable or not, as the set Lenc.

Lenc := L
(
(([+|−]a∗)∗ ≤ [+|−]b∗)

∗)
37
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The following example illustrates the encoding.

Example 3. Consider the following integer linear program.

A := {((5, 1, 0, 7), 15) , ((0,−8, 1,−1),−4) , ((0, 0, 0, 1),−1) , ((−1, 0, 3, 0), 6)}

The encoding of A reads as follows.

+a5 + a+ +a7 ≤ +b15 +−a8 + a− a ≤ −b4 + + + +a ≤ −b− a+ +a3+ ≤ +b6

The question we want to investigate is whether the intersection of ILP,
encoded in the above described way, with a regular language, given by an
automaton, is empty.

Definition 30 (intReg(ILP)).
Given: Deterministic finite automaton A.
Question: Is L(A) ∩ ILPenc 6= ∅?. In other words, does A accept a solvable
integer linear programming instance?

Where ILPenc is ILP encoded in the described way.
Since Lenc is defined by a regular expression it is a regular language. Therefore,
we can assume L(A) to be a subset of Lenc.

1

5.1 Construction

We will follow the ideas presented in the previous chapter of investigating what
kinds of loops can occur in the automaton without violating the encoding
format, namely loops inside a coefficient, loops over whole coefficients, and
loops over whole inequations. This will lead us to the definition of coefficient
transition sets, for which we will find representatives. Over these representatives
we will define inequation transition sets which will describe all inequations
which can be read in between two states. We will again find representatives for
these sets and construct a new automaton from these representatives similar to
the one in chapter 4.

Definition 31 (Transition set.). Let A = (Q,Σ, δ, q0, F ) be a deterministic
finite automaton. We define for all q, q′ ∈ Q the coefficient transition set Λs

q,q′

as

Λ+
q,q′ = {+ai |∃q1, q2 : δ(q,+) = q1 ∧ δ∗(q1, a

i) = q′∧
δ(q′, σ) = q2 with σ ∈ Σ\{a}}

1Otherwise we will consider the intersection of L(A) ∩ Lenc, which is also regular.
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if s is a plus and as

Λ−q,q′ = {−ai |∃q1, q2 : δ(q,−) = q1 ∧ δ∗(q1, a
i) = q′∧

δ(q′, σ) = q2 with σ ∈ Σ\{a}}

if s is a minus. Therefore, Λs
q,q′ contains all coefficients which can be completely

read in between the states q and q′. For the β-values, we analogously define
transition sets Bs

q,q′ for every pair of states q, q′ ∈ Q as

B+
q,q′ = {+bi |∃q1, q2 : δ(q,+) = q1 ∧ δ∗(q1, b

i) = q′∧
(δ(q′, σ) = q2 with σ ∈ Σ\{a} ∨ q′ ∈ F )}

if s is a plus and as

B−q,q′ = {−bi |∃q1, q2 : δ(q,−) = q1 ∧ δ∗(q1, b
i) = q′∧

(δ(q′, σ) = q2 with σ ∈ Σ\{a} ∨ q′ ∈ F )}

if s is a minus. When the context is clear, we will often refer to Λs
q,q′ as Λ and

to Bs
q,q′ as B.

We now want to find a set of representatives reps(Λ) for each coefficient
transition set Λ. The set reps(Λ) will contain all relevant2 coefficients from the
set Λ. Since all inequations are of the form α1x1 + · · ·+ αmxm ≤ β, increasing
a positive summand makes the inequation system harder to be solved, while
decreasing a positive summand may only enlarge the set of solutions. Similarly,
decreasing a negative summand enlarges the set of solutions, while increasing
it may shrink the set of solutions. So, we only have to consider the largest
and smallest coefficient contained in the coefficient transition set. The largest
[smallest] coefficient will correspond, in combination with a negative [positive]
xi value, to the smallest negative [positive] summand. If a coefficient transition
set is infinite, coefficients with an arbitrary large magnitude are contained in
the set. To focus on the main idea, we will choose the meta-characters +∞ and
−∞ in this case as representatives indicating that we can replace them with a
large enough coefficient. If a β-transition set is infinite, we can find arbitrary
large β-values in the set what we will indicate by choosing the +∞-sign as a
representative. We will later ignore all inequations with an +∞ representative
for a β-transition set. We refer to Definition 21 and leave it to the reader to
convince himself that there is an algorithm replacing the ∞-sign by actual
coefficients.

2A coefficient is considered to be irrelevant if it can be replaced by a smaller or larger
coefficient without making the ILP unsolvable.
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Definition 32. We define for every coefficient transition set Λs
q,q′ the set

reps(Λs
q,q′) and for the β-transition sets Bs

q,q′ the set reps(Bs
q,q′) as:

reps(Λ+
q,q′) :=

{
{min

val
(Λ+

q,q′),+∞}, if |Λ+
q,q′ | =∞

Λ+
q,q′ , otherwise,

reps(Λ−q,q′) :=

{
{−∞,max

val
(Λ−q,q′)}, if |Λ−q,q′ | =∞

Λ−q,q′ , otherwise,

reps(B+
q,q′) :=

{
+∞, if |B+

q,q′ | =∞
{max

val
(B+

q,q′)}, otherwise,

reps(B−q,q′) := {max
val

(B−q,q′)}.

Where the functions min
val

and max
val

return the element which encodes the

minimal, respectively maximal, value of all elements in the set.

The next step is to identify all inequations which can be read in between
two states. Those inequations should only contain relevant coefficients for what
reason, the inequation sets are defined over the sets reps(Λ) and reps(B).

Definition 33. Let A = (Q,Σ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ Lenc. For every states q, q′ ∈ Q we define the inequation transition
set Ξq,q′ as:

Ξq,q′ = {s1i1s2i2 . . . skik ≤sbj | k ∈ N,∃q1, q2, . . . qk+2 : s1i1 ∈ reps(Λs1
q,q1

)∧
s2i2 ∈ reps(Λs2

q1,q2
) ∧ · · · ∧ skik ∈ reps(Λsk

qk−1,qk
)

∧ δ(qk,≤) = qk+1 ∧ sbj ∈ reps(Bsb
qk+1,qk+2

)}

The set Ξq,q′ contains therewith all inequations, which can be read in
between the states q and q′ and consists only of important coefficients.

Now we want to pick finitely many representatives for every inequation
transition set Ξq,q′ . An inequation transition set Ξq,q′ , which contains for every
possible solution vector ~x an inequation which is satisfied by ~x, is assigned
with the representative ε indicating that inequations read between q and q′ can
be removed from the ILP. This can be done because if the other inequations
of the ILP have a common solution, then there is an inequation which can
be read in between q and q′ which is satisfied by this solution. Two types of
inequation transition sets have this property. If Ξq,q′ contains an inequations
with an ∞-sign as β-value, an inequation with an arbitrary high actual β-value
can be read in between q and q′. So, for every value of the left side of the
inequation we can read an even bigger right side. Therefore, we assign those
inequation transition sets with an ε representative.
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The other type of Ξq,q′ sets are those which contain an arbitrary high indexed
coefficient. As we will see in Lemma 11, we can simultaneously pick inequations
from all of these sets, such that in each inequation the coefficient with the
highest index will dominate the sum in a way that the inequation is satisfied.
We will identify those inequations transition as the sets which are infinite after
we removed all inequation ending with more than n consecutive signs3.
If the modified inequation sets are finite, we simply pick the hole set as the set
of representatives. Inequations with more then |Q| = n consecutive sign after
the last non-zero coefficient can also be ignored, because there is an equivalent
inequation with less then n sign in the inequation set. With this considerations
in mind, we define for all states q, q′ ∈ Q a set of representatives reps(Ξq,q′) for
the inequation transition set Ξq,q′ .

Definition 34. Let LTrash := L(([+|−][a∗|∞])∗ [+|−]>n ≤ [+|−][b∗|∞]) be
the set of all inequations where the left side ends with more than |Q| = n
consecutive signs.
We define for every inequation transition set Ξq,q′ a set of representatives
reps(Ξq,q′) as

reps(Ξq,q′) :=


{ε}, if ∃w ∈ Ξq,q′ which ends with ∞,
{ε}, if |Ξq, q′\LTrash| =∞,
Ξq, q′\LTrash, otherwise.

Note that there are only finitely many sets reps(Ξq,q′) which are by con-
struction all of a finite size.

We will now construct a shrunken automaton which will have the finitely
many inequations, chosen as a representative, as it’s alphabet.

Definition 35. Let A = (Q,Σ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ Lenc. We define shrink(A) := (Q,Σ′, δ′, q0, F ) with

Σ′ =
⋃

q,q′∈Q

reps(Ξq,q′)

δ′ = {(q, ξ, q′) | ξ ∈ reps(Ξq,q′)}
where we interpret all members of the sets of representatives as atomic letters.

Lemma 13 will show that we only have to consider simple paths in the
shrunken automaton.

Definition 36. Let A = (Q,Σ, δ, q0, F ) be a deterministic finite automaton
and shrink(A) be the shrunken automaton corresponding to A. We define
condensed(A) as the automaton containing only the simple paths in shrink(A).

3By removing more than n consecutive signs from the end of the sum, we ensure that
there is a non-zero coefficient under the last n coefficient. If the set is still infinite we can
find inequations with arbitrary high non-zero coefficients.
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5.2 Correctness

We will now present a bunch of lemmas which in the end will proof that
L(A)∩ ILPenc 6= ∅ ⇔ L′(condensed(A))∩ ILPenc 6= ∅. With L′(condensed(A))
[L′(shrink(A))] we refer to the language L(condensed(A)) [L(shrink(A))] where
the wild-cards ∞ are replaced by actual coefficients.

First, we will show that it is sufficient to only consider the largest and
smallest coefficient which can be read in between two states.

Lemma 10. If w ∈ L(A) ∩ ILPenc, ~x is a solution of w, aij is the j-th
coefficient of the i-th inequation of w, and aij can be partitioned into substrings
aij1 , aij2 , aij3 with aij = aij1aij2aij3, aij2 6= ε, and the state in which A is after
reading w up to the end of aij1 is the same state in which A is after reading w
up to aij2

4, then the following holds:

1. If xj ≥ 0 and aij has a + sign, then w′ = w where aij is replaced by
aij1aij3 is also in L(A) ∩ ILPenc and ~x is a solution for w′.

2. If xj ≥ 0 and aij has a − sign, then w′ = w where aij is replaced by
aij1a

2
ij2
aij3 is also in L(A) ∩ ILPenc and ~x is a solution for w′.

3. If xj ≤ 0 and aij has a + sign, then w′ = w where aij is replaced by
aij1a

2
ij2
aij3 is also in L(A) ∩ ILPenc and ~x is a solution for w′.

4. If xj ≤ 0 and aij has a − sign, then w′ = w where aij is replaced by
aij1aij3 is also in L(A) ∩ ILPenc and ~x is a solution for w′.

Proof. Note that all four statements affect only one coefficient of one inequation
in the linear program. The fact that w′ is accepted by A follows from the
definition of aij, which states that A is in the same state before and after
reading the sub-word aij2 . Therefore, aij2 can be pumped.
Since we know that ~x is already a solution for w we have to show that it
remains a solution if we change one inequation in the described way. Note that
all considered inequations are of the form ~α · ~x ≤ β.
In 1) xi, as well as its coefficient, are non negative integers satisfying the
inequation. In w′ the value of the coefficient aij has decreased by the size of
aij2 (which is not zero) decreasing also the value of the summand |aij1aij3| · xi,
hence decreasing the sum of all summands in the inequation which has already
been smaller than β. Thus, the altered inequation of w′ is also satisfied and
since the other inequations have not been altered, the ILP w′ is also satisfied
by the solution ~x.
In 2) the value of the summand |aij| · xi is negative, hence increasing the size of
aij decreases the value of the summand and therefore the value of the left side

4This means that aij is read on a loop and the sub-word aij2 can be pumped.
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of the inequation. We do so by pumping aij2 , therefore w′ is also satisfied by ~x.
Case 3) is analog to 2) and case 4) is analog to case 1).
This concludes the proof.

Next, we will focus on whole inequations. We will show that by restricting
the inequations which can appear in a word of R to inequations from the above
defined sets of representatives we are not altering the existence of a solvable ILP
in R. As we already explained before Definition 34, for every solution vector ~x
we can replace the inequations with an ∞-sign as β-value by inequations with
actual β-values, which are satisfied by ~x, and which can be read in between the
same states in the automaton. Next, we want to focus on inequation transition
sets containing inequations with arbitrary high non-zero coefficients. We will
show that for every solution vector ~x we can simultaneously replace inequations
from those sets in a way that the replacements are satisfied by an extension
of ~x. So, if the ILP is solvable without inequations from Ξq,q′ sets which are
represented by ε-signs, then we can enlarge the ILP and the solution to include
those inequations.

For the next lemma, we want to distinguish the finite inequation transition
sets from the infinite ones, after removing some unimportant inequations.

Definition 37. Let Lβ=∞ := L(([+|−][a∗|∞])∗ ≤ +∞) be the set of all
inequations with an annotated unbounded β-value. Let

FinΞ := {Ξq,q′ | q, q′ ∈ Q ∧ |Ξq, q′\LTrash| <∞∧ Ξq,q′ ∩ Lβ=∞ = ∅}

be the set of all finite inequation transition sets without an unbounded β-value
and

InfΞ := {Ξq,q′ | q, q′ ∈ Q ∧ |Ξq, q′\LTrash| =∞∧ Ξq,q′ ∩ Lβ=∞ = ∅}

be the set of all infinite ones.

We will now find representatives for every set in InfΞ such that the following
holds. If an ILP consisting of inequations from the sets of FinΞ has a solution,
then we can extend the ILP with any combination of representatives of the
sets in InfΞ such that we can extend the solution to a solution of the extended
ILP. Therefore, we can ignore inequations from the sets in InfΞ, as we did by
assigning ε as a representative in Definition 34.

Definition 38. Let σ : [|InfΞ|] → InfΞ be an arbitrary but fixed ordering of
the sets in InfΞ. We define alternative representatives arep for the inequation
transition sets in InfΞ with algorithm 3. Let n := |Q| and #±(w) denote the
number of signs in w.
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Algorithm 3 Computation of alternative representatives for Ξ ∈ InfΞ.

for i← 1 to |InfΞ| do
arep(σ(i))← min

lex
({w ∈ σ(i) | i · n2 < #±(w) ≤ (i+ 1) · n2})

end for

The idea is to pick inequations as alternative representatives, which form
together a matrix in row echelon form. We can assign a value to the variable
of the leading coefficient in a way, that this summand dominates the other
summands, such that the inequation is satisfied.

The inequations in Ξ are defined over representatives of coefficient transition
sets, which are by definition the sign ±∞ or labels of loop-fee paths. An
inequation in the sets of FinΞ can only consist of up to n = |Q| different
coefficients, each of size up to n. Therefore, every inequation in the sets
of FinΞ is of length at most n2. The definition of arep(Ξ) ensures that the
representatives of Ξ ∈ InfΞ contain more coefficients than any representative
of the finite inequation transition sets. It also ensures that the number of
coefficients contained in the representing inequation is strictly monotonously
rising with the order σ. Especially, the index of the highest non-zero coefficient
is strictly monotonously rising with σ.

Lemma 11. Let w be a solvable ILP consisting only of inequations from sets
in FinΞ. Let ~x be a valid solution of w. Then, for every ILP w′ consisting of
w and additional inequations from {arep(Ξ) | Ξ ∈ InfΞ} the vector ~x can be
extended to a solution ~x′ of w′.

Proof. Let ~x = (x1, x2, . . . , xi) and let m be the number of variables in w′. Let
var set(ξ) be a function returning the variables appearing in the inequation
ξ with a non-zero coefficient. We denote with coeff(ξ, yi) the coefficient of
variable yi in the inequation ξ. With value(yj) we denote the assigned value
xj of the variable yj and β(ξ) refers to the right side β of the inequation
ξ. Algorithm 4 assigns values to the variables yi+1, yi+2, . . . , ym such that
~x′ = (x1, . . . , xi, xi+1, . . . , xm) is a solution of the ILP w′.

The algorithm works as follows. We go through the inequations appearing
in w′ which have been chosen as representatives for the sets in InfΞ in the same
order as in Algorithm 3 when we assigned the representatives. Therefore, the
number of appearing variables per inequation is rising. In every inequation we
consider, there is at least one variable which has not appeared in the previously
considered inequations. We assign the new variables with a zero value, except
for the variable with the highest index. This variable (called MaxVar) gets a
value which compensates all the other summands in the inequation satisfying
the inequation. We can choose the value of MaxVar freely, because the variable
has not appeared in any other inequation we considered earlier and if it
appears in any later considered inequation, there will always be at least one
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Algorithm 4 Extending the solution ~x of the ILP w to a solution ~x′ of w′.

AssignedVars ← {1, . . . , i}
for j ← 1 to |InfΞ| do

CurIneq ← arep(σ(j))
if CurIneq appears in w′ then

ToAssign ← var set(CurIneq)\AssignedVars
MaxVar← xk ∈ ToAssign with highest index k
ToAssign← ToAssign\{MaxVar}
for all y ∈ ToAssign do

value(y)← 0
end for
AssignedVars← AssignedVars ∪ ToAssign
ToAssign← ∅

b← β(CurIneq)
SumOthCoeff←

∑
xl∈{var set(CurIneq)\{MaxVar}}

coeff(CurIneq, xl) ·value(xl)

CoeffMaxVar← coeff(CurIneq, MaxVar)

value(MaxVar)← b−SumOthCoeff
CoeffMaxVar

AssignedVars← AssignedVars ∪ {MaxVar}
end if

end for

new variable in the inequation which has not appeared earlier itself, and
which can again compensate every other summand. It is easy to see that
inequation CurIneq is satisfied by the chosen variable assignment. Therefore,
~x′ = (x1, . . . , xi, value(yi+1), . . . , value(ym)) is a solution of the ILP w′.

We will now show that, if there is a solvable ILP in L(shrink(A)), we can
replace any ε signs in this ILP by actual inequations, resulting in a solvable
ILP in L(A).

Lemma 12. Let A = (Q,Σ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ Lenc. Let w ∈ L(A) and let S = {ξ ∈ w | ∃ Ξq,q′ with ξ ∈
Ξq,q′ , the subword ξ in w is read between q and q′, and rep(Ξq,q′) = {ε}} be
the sets of inequations in w for which the representative ε could be read on a
similar path in shrink(A). Then, for w′ ∈ L′(shrink(A)) with w′ being w with
inequations in S being replaced by ε, it holds that if w′ ∈ ILPenc, then either
w ∈ ILPenc or there exists a word w′′ ∈ L(A) with w′ is a sub-word of w′′ and
w′′ ∈ ILPenc

5.

5Where the ε-signs in w′ have been interpreted as the empty word.
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Proof. It holds that w′ only consists of inequations from sets in FinΞ or the
ε-sign. If w′ is already a member of L(A), the claim follows. Assume w′ /∈ L(A).
Since w′ ∈ L′(shrink(A)), there is a path p in shrink(A) corresponding to
w′. This path includes at least one transition δ(q, ε) = q′. By Definition
34, the set Ξq,q′ either contains an inequation with an ∞-sign as β-value
or is in InfΞ. Let ~x be a solution of w′. In the first case, we can replace
the ε-sign by an inequation (~α, β) from Ξq,q′ with ~α~x ≤ β since there are
inequations with arbitrary high β-values in Ξq,q′ . Let’s consider the second case.
Definition 38 defines representatives which can be read between q and q′ in the
original automaton instead of ε. Following Lemma 11 w′ can be enlarged with
inequations from {arep(Ξ) | Ξ ∈ InfΞ} without making the ILP represented by
w′ unsolvable. So, if we replace all the ε-transitions in the path p by paths in
A corresponding to the alternative representatives form Definition 38, we get
an ILP w′′ ∈ L(A) with w′′ ∈ ILPenc.

Only simple paths in shrink(A) must be considered.

Lemma 13. Let w,w′ ∈ Lenc and w′ be w without an arbitrary inequation ξ
from w. (So, w′ is w with one inequation less.) If w ∈ ILPenc then w′ ∈ ILPenc.

Proof. Adding an inequation can only decrease the set of solutions of the ILP.
So, removing an inequation can not make the ILP unsolvable.

If there exists a solvable ILP in L(A), there exists a solvable ILP in
L′(condensed(A)).

Lemma 14. Let A = (Q,Σ, δ, q0, F ) be a deterministic finite automaton with
L(A) ⊆ Lenc. If L(A) ∩ ILPenc 6= ∅ then L′(condensed(A)) ∩ ILPenc 6= ∅.

Proof. Let w ∈ L(A)∩ILPenc be the label of an accepting path in A representing
a solvable ILP. Lemma 10 states that by pumping the coefficients in w in
the described way we obtain an ILP w′ which is still solvable. Therefore,
we used ∞-signs as a wild-card indicating that we can replace the coefficient
with an arbitrary high coefficient. Note that we do not have to predict which
value the corresponding variable will get, we just add all of the finitely many
coefficient-variants to the set of representatives. So, by restricting the coefficient
transition sets of A to the sets or representatives defined in Definition 32 we
will not lose any solvable ILP. Therefore, we can focus only on inequations
over the representatives of the coefficient transition sets.

By assigning representatives to the inequation transition sets in Definition
34, we kept every inequation in the finite transition sets and deleted the
inequations in the infinite transition sets. Lemma 13 states that by removing
inequations from w′ we will not lose the solvability of the ILP. Therefore, if
there is a solvable ILP in L(A) there is a solvable ILP in L(shrink(A)), too.
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Finally, Lemma 13 also tells us that if there is a solvable ILP in L(shrink(A))
it can be read on a simple path because adding more inequation makes the
ILP harder to be true. Since in Definition 36 the automaton condensed(A) is
constructed by restring the automaton shrink(A) to its simple paths it holds
that L(A) ∩ ILPenc 6= ∅, then L′(condensed(A)) ∩ ILPenc 6= ∅.

If there exists a solvable ILP in L′(condensed(A)), there exists a solvable
ILP in L(A)

Lemma 15. Let A = (Q,Σ, δ, q0, F ) be a deterministic finite automaton with
L(A) ⊆ Lenc. If L′(condensed(A)) ∩ ILPenc 6= ∅ then L(A) ∩ ILPenc 6= ∅.

Proof. Let w ∈ L(condensed(A)) be the label of an accepting path in
condensed(A). In finite time, we can pick explicit coefficients for the wild-card-
signs ∞ in w with values above |Q||Q|, such that their summand dominates the
inequation in which it appears. Let wc be w where the wild-cards are replaced
by actual coefficients. We will show that if there is a w ∈ L(condensed(A))
such that wc ∈ ILPenc, then there is a word x ∈ L(A) ∩ ILPenc. Since
L′(condensed(A)) ⊆ L′(shrink(A)) the word wc is also in L′(shrink(A)) and
by Lemma 12 we can extend the word wc to a word wc

′ ∈ L(A), such that
wc ∈ ILPenc ⇒ wc

′ ∈ ILPenc. If we set x to wc
′, the claim follows.

5.3 Decidability

Theorem 11. Let R be a regular language. It is decidable whether R∩ILPenc 6=
∅, i.e. the problem intReg(ILP) is decidable.

Proof. Since Lenc is regular, we can restrict R to the regular language R′ =
R ∩ Lenc. Let A = (Q,Σ, δ, q0, F ) be a deterministic finite automaton with
L(A) = R′. For the automaton A, the Definitions 31 and 32 describe the
construction of coefficient transition sets and assigning their representatives.
In Definition 33 inequation transition sets are constructed based on those
representatives. These inequation transition sets get representatives themselves
in Definition 34. In Definition 35 a new automaton shrink(A) is defined,
based on the representatives for the inequation transition sets. Finally, in
Definition 36 the automaton condensed(A) is defined as the loop-free version
of shrink(A). All those constructions are constructive and can be computed by
an algorithm. Lemma 14, together with Lemma 15, state that L(A)∩ ILPenc 6=
∅ ⇔ L′(condensed(A))∩ILPenc 6= ∅. Since L′(condensed(A)) is by construction
finite and testing a given ILP for solvability can be done in finite time, we
can test all words in L′(condensed(A)) for membership in ILPenc in finite time.
Therefore, R ∩ ILPenc 6= ∅ is decidable.
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Chapter 6

Merge, Separate, and Replace

In this chapter we will elucidate the three main techniques of merging, separating,
and replacing, which have been used to show decidability of the intReg-problem.
In chapter 4 we used pumping arguments to separate the existentially quantified
variables from each other, while we wanted to merge the references to universally
quantified variables wherever possible. In chapter 5 we replaced coefficients
with other coefficients which simplified the inequation system. We will discuss
the techniques of merging, separating, and replacing by using them to show
decidability of the intReg-problem for Vertex Cover, Independent Set,
and Knapsack. Each of this proofs will focus on one of the techniques and
illustrates it’s applicability.

6.1 Merging - Vertex Cover

First, we want to investigate the problem Vertex Cover (short VC) and
demonstrate the method of merging while proving decidability of intReg(VC).
We begin with a formal definition of the NP-complete problem [CFK+15].

Definition 39 (VC).
Given: Graph G = (V,E) and a positive integer k.
Question: Is there a vertex cover for G of size k or less, i.e., a subset V ′ ⊆ V
with |V ′| ≤ k such that for each edge {u, v} ∈ E it holds that u ∈ V ′ ∨ v ∈ V ′?

We will encode the problem in the following way. First, the integer k is
given in an unary encoding. Then, the edges in E are listed, separated by
$-signs, where the vertexes are separated by #-signs and given in a unary
encoding as well. Vertexes, which are not part of any edge, are listed in an
unary encoding at the end of the word, separated by $-sings. The set of all
encoded VC-instances, regardless if they are solvable or not, is a subset of the
following set.

49



50 CHAPTER 6. MERGE, SEPARATE, AND REPLACE

Definition 40. Every encoded VC-instance is a member of the set EncVC

defined by the regular expression

a∗$(a∗# a∗$)∗(a∗$)∗

Note that the set EncVC is regular. The following example illustrates the
encoding.

Example 4. Let G = (V,E) be a graph with

V = {1, 3, 4, 8, 10, 11},

E = {{1, 4}, {1, 11}, {4, 8}, {4, 11}, {8, 10}{10, 4}}.
The VC-instance G, k = 3 is encoded as:

a3$a#a4$a#a11$a4#a8$a4#a11$a8#a10$a10#a4$a3$

The sequence of indexes of the vertexes does not need to be succeeding, nor
increasing.

We want to show decidability of the intReg(VC) problem. Therefore, we will
start with a regular language accepted by a deterministic finite automaton and
construct a new automaton condensed(A). It will hold that there is a solvable
VC-instance under finitely many candidates in L(condensed(A)) if and only if
there is one in the original language. To do so, we have to go through some
definitions and lemmas first.

6.1.1 Construction

Every word w in EncVC consists of three parts. The first string of a’s determines
the bound k. If this part can be read over a loop, the string of a’s can be
pumped to an arbitrary high number. Therefore, we can enlarge the bound k
until it is larger than |V |, in which case we know that R∩VC6= ∅.

The second part of w describes the set E. Adding an additional edge to
a graph will never make the graph more likely to contain a vertex cover of a
fixed size. Therefore, pumping whole edges will not yield to a word which is in
VC if the original one was not. But, changing already contained edges such
that they both share a vertex, might let the graph contain a vertex cover of
the demanded size. To collect all the possibilities of edges sharing a vertex,
we will define vertex transition sets. Then, we will look at every nonempty
intersection of those sets like in Definition 19 and assign representatives to the
vertex transitions sets similar to Algorithm 1.

The third part of w lists all vertexes of the graph, which are not part of any
edge. Adding, removing, or replacing those vertexes do not influence whether
the graph contains a vertex cover, therefore loops over those parts can be
ignored.
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Definition 41. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ EncVC. For every pair of states q, q′ ∈ Q we define the two sets

Λ1
q,q′ := {x ∈ L (a∗#) | ∃q1 ∈ Q : δ(q1, $) = q ∧ δ∗(q, x) = q′} ,

Λ2
q,q′ := {x ∈ L (a∗$) | ∃q1 ∈ Q : δ(q1,#) = q ∧ δ∗(q, x) = q′} ,

as the vertex transition sets from q to q′, where Λ1
q,q′ [Λ2

q,q′ ] contains vertexes
being the first [second] part of an edge. Furthermore, let

Λq,q′ := Λ1
q,q′ ∪ Λ2

q,q′

be the union of all vertex transition sets from q to q′. For readability reasons,
we will sometimes refer to Λi

q,q′ as Λ if i and q, q′ are understood.

Each Λ is a regular set because it is recognized by a sub-automaton of A.

We define the operations truncV C and extendV C according to the operations
trunc and extend in Definition 18.

Definition 42. Let truncV C : Γ = {a, $,#}∗ → {a}∗ be an homomorphism
with

truncV C(γ) :=

{
a if γ = a,

ε otherwise.

We define the operation extendV C such that extendV C(w,Λ) := trunc−1
V C(w)∩Λ

for w ∈ truncV C(Λ) and language Λ .

Intuitively, function truncV C returns the vertex forgetting its position in an
edge, while extendV C provides us with all possible occurrences of a vertex in
an edge leading from state q to state q′.

Based on Definition 19 we define the set of all combinations of vertex
transition sets sharing at least one vertex. This means that for all corresponding
pairs of states we can read the same vertex and the involved edges share this
vertex.

Definition 43. Let P := {p ∈ P ({Λq,q′ | q, q′ ∈ Q}) | ∩Λ∈ptruncV C(Λ) 6= ∅}
be the subset of the powerset of all vertex transition sets, which only contains
sets of languages with a common vertex.

Note that for every p ∈ P all non-empty subsets of p are also contained
in P .

We will now pick a finite set of representatives rep(Λ) ⊆ Λ for every
vertex transition set Λ. We determine these sets with Algorithm 5 based on
Algorithm 1.
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Definition 44. For every vertex transition set Λi
q,q′ we define a finite set of

representatives rep(Λi
q,q′) with Algorithm 5.

Algorithm 5 Computation of rep(Λ) for vertex transition sets.

for all Λ ∈ {Λi
q,q′ | q, q′ ∈ Q, i ∈ {1, 2}} do

rep(Λ)← ∅
end for
for all p ∈ P do

label(p)← min
lex

(⋂
Λ∈p truncV C(Λ)

)
for all Λ ∈ p do

rep(Λ)← rep(Λ) ∪ extendV C(label(p),Λ)
end for

end for

The sets rep(Λ) are finite because the set {Λi
q,q′ | q, q′ ∈ Q, i ∈ {1, 2}} is

finite and for every element of this set only one representative is picked.

Next, we will define transition sets for the threshold k and for every single
vertex not appearing in an edge. If the transition set for k is infinite we will
always find a word in R which represents a solvable VC instance because we
can set the boundary k to a larger number than the number of vertexes. Hence,

if the transition set of k is infinite, we set a string larger than 22|Q|22
as a

representative1.

Definition 45. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ EncVC. For all q ∈ Q let Kq0,q := {w ∈ L (a∗$) | δ∗(q0, w) = q} be
the transition set of k from the initial state q0 to the state q.

Definition 46. For every transition set Kq0,q of k we define a finite set of
representatives rep(Kq0,q) as

rep(Kq0,q) :=

{min
lex

(Kq0,q ∩ L
(
a≥22|Q|

22

$
)

)} if |Kq0,q| =∞,

Kq0,q otherwise.

Since the single vertexes do not contribute to the problem VC we will assign,
in the case of infinite transition sets, the lexicographical minimal element of their
transition sets, which does not overlap with any previously assign representative,
as a representative. If the transition set is finite, we chose the whole set as the
set of representatives.

1There are 2|Q|2 many vertex transition sets Λ. The power set of the set of all Λ has 22|Q|
2

elements. Therefore, there is a total of 22|Q|
2

different representatives for vertexes appearing

in edges. So, there can be up to 22|Q|
22

different edges in a word from L(condensed(A)).
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Definition 47. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ EncVC. For all q, q′ ∈ Q we define the transition set for single
vertexes not appearing in an edge as

Sq,q′ := {w ∈ L (a∗$) | ∃q1 ∈ Q : δ(q1, $) = q ∧ δ∗(q, w) = q′}.

Definition 48. For every transition set Sq,q′ we define a finite set of represen-
tatives rep(Sq,q′) as

rep(Sq,q′) :=


{min

lex

(
Sq,q′\{extendV C(truncV C(γ),Sq,q′) |

γ ∈
⋃
q,q′∈Q, i∈{1,2} rep(Λi

q,q′)}
)
} if |Sq,q′| =∞,

Sq,q′ otherwise.

So, by pumping, the isolated vertexes do not fall together with vertexes
contained in edges.

Now we are able to define a condensed automaton based on the chosen
representatives according to Definition 24.

Definition 49. Let R ⊆ EncVC be a regular language and A = (Q,Γ, δ, q0, F )
be a deterministic finite automaton with L(A) = R. We define the condensed
automaton condensed(A) = (Q,Γ′, δ′, q0, F ) with

Γ′ =
⋃
q∈Q

rep(Kq0,q) ∪
⋃

q,q′∈Q

rep(Λq,q′) ∪
⋃

q,q′∈Q

rep(Sq,q′)

and ∀q ∈ Q : (q0, w, q) ∈ δ′ if w ∈ rep(Kq0,q)
∀q, q′ ∈ Q : (q, w, q′) ∈ δ′ if w ∈ rep(Λq,q′)

∀q, q′ ∈ Q : (q, w, q′) ∈ δ′ if w ∈ rep(Sq,q′) .

6.1.2 Correctness

In this section we will show for a given DFA A that L(A) ∩ VC 6= ∅ ⇔
L(condensed(A)(A)) ∩VC 6= ∅.

Lemma 16. Let R ⊆ EncVC be a regular language, defined through the deter-
ministic finite automaton A = (Q,Γ, δ, q0, F ). If L(condensed(A)) ∩VC 6= ∅
then also R ∩VC 6= ∅.

Proof. By construction L(condensed(A)) is a subset of L(A). Therefore, every
solvable VC instance in L(condensed(A)) also appears in R.

Lemma 17. Let R ⊆ EncVC be a regular language, defined through the de-
terministic finite automaton A = (Q,Γ, δ, q0, F ). If R ∩ VC 6= ∅ then also
L(condensed(A)) ∩VC 6= ∅.
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Proof. Let w ∈ R ∩VC. Then w can be split up into factors

w = wkwe11we21we12we22 . . . we1mwe2mwv1wv2 . . . wvn

where wk ∈ Kq0,qe11 , we1i ∈ Λ1
q
e1
i
,q
e2
i

, we2i ∈ Λ2
q
e2
i
,q
e1
i+1

, and wvj ∈ Sqvj ,qvj+1
. Then,

there is a word w′ ∈ condensed(A) which can be analogously partitioned into

w′ = wk
′we11

′we21
′we12

′we22
′ . . . we1m

′we2m
′wv1

′wv2
′ . . . wvn

′.

We will replace the sub-words in Λ1
q,q′ with sub-words in rep(Λ1

q,q′) and the sub-
words in Λ2

q,q′ with sub-words in rep(Λ2
q,q′). By construction, there are at most

22|Q|2 words in all sets rep(Λ) together. Therefore, there can be at most 22|Q|22

different edges in a word in L(condensed(A)). So, wk is either already contained

in rep(Kq0,qe1 ), and we set w′k = wk, or we set w′k = a22|Q|
22

∈ rep(Kq0,qe1 ) and
hence k is larger then |E|. Since additional vertexes, which do not appear
in any edge, don’t have to be considered while finding a vertex cover, we
can just replace the sub-words wvj ∈ Sqvj ,qvj+1

with their representatives in

rep(Sqvj ,qvj+1
). For the sub-words we1i ∈ Λ1

q
e1
i
,q
e2
i

and we2i ∈ Λ2
q
e2
i
,q
e1
i+1

we have

to consider which other sub-words weh ∈ Λq,q′ reference the same vertex. For
a sub-word we ∈ Ew := {we11 , we21 , we12 , we22 , . . . , we1m , we2m} let H1 := {h1 ∈
{e1

1, . . . e
1
m} | truncV C(wh1) = truncV C(we)}, H2 := {h2 ∈ h2 ∈ {e2

1, . . . e
2
m} |

truncV C(wh2) = truncV C(we)}. Let H := H1 ∪ H2 be the index set of all
sub-words encoding the same vertex as we. The collection of the corresponding

vertex transition sets pe :=
(
{Λqh1 ,qh2

| h1 ∈ H} ∪ {Λqh2 ,q(h+1)1
| h2 ∈ H}

)
is in

P , because the intersection of the vertex transition set is by definition not
empty. By construction, for all h1, h2 ∈ H the set rep(Λh1,h2) respectively
rep(Λh2,h+11) received a label from pe. We pick wh

′ for all h ∈ H as the label
given by pe. This will yield a consistent renaming of the vertex we.

The process of renaming will not disconnect any vertexes which has been
previously connected, but it might lead to merging of distinct vertexes. If
for example, there are several occurrences of vertexes in the set Λq,q′ , which
all appear in one single edge each, then the renaming process will replace all
of them with the same vertex, since they are all only in the set p := {Λq,q′}.
Lemma 18 will proof that merging vertexes in this way will maintain the
existence of a vertex cover of the demanded size. So, we constructed a word
w′ ∈ condensed(A) which is also in VC. Together with Lemma 18 this concludes
the proof.

Lemma 18. Let G = (V,E) be a graph containing a vertex cover V ′ of size k.
Let v, v′ ∈ V be two distinct vertexes. Then, G? = (V ?, E?) being G, where v′

and v have been merged by replacing v′ by v, also contains a vertex cover V ′′

of size at most k.
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Proof. Since G has a vertex cover, for each edge there has to be one vertex in
V ′. We make a case distinction of the vertexes contained in V ′.

• If v /∈ V ′ and v′ /∈ V ′, then for all {v, u}, {v′, u′} ∈ E the vertexes u and
u′ has to be in V ′. If v′ is replaced by v, all edges {v, u} ∈ E? are also
covered by V ′′ = V ′.

• If v /∈ V ′ and v′ ∈ V ′, then for all {v, u} ∈ E it holds u ∈ V ′. If
v′ is replaced by v, all edges {v, u} ∈ E? are also covered by V ′′ =
(V ′\{v′}) ∪ {v}. Edges {v′, u′} ∈ E are replaced by edges {v, u′} ∈ E?

and hence covered by v ∈ V ′′.

• If v ∈ V ′ and v′ /∈ V ′, then for all {v′, u′} ∈ E it holds u′ ∈ V ′. If v′ is
replaced by v, all edges {v, u} ∈ E? are also covered by V ′′ = V ′. Edges
{v′, u′} ∈ E are replaced by edges {v, u′} ∈ E? and hence covered by
v ∈ V ′′.

• If v ∈ V ′, v′ ∈ V ′, and v′ is replaced by v, all edges {v, u} ∈ E? are
also covered by V ′′ = V ′\{v′}. Edges {v′, u′} ∈ E are replaced by edges
{v, u′} ∈ E? and hence covered by v ∈ V ′′.

Edges not containing v or v′ have not been changed and hence V ′′ is a vertex
cover for G? of size at most k.

6.1.3 Decidability

We now show that it is decidable whether L(condensed(A)) contains a solvable
Vertex Cover instance. Therefore, we will proof that it is sufficient to
consider only simple paths in condensed(A). We will give a lemma similar to
Lemma 5.

Lemma 19. Let A be a deterministic finite automaton with L(A) ⊆ EncVC and
w ∈ L(condensed(A)) be the labeling of an accepting path p in condensed(A)
containing at least one loop. Let w′ be w without the factors read in the loops
of p. If w is a solvable Vertex Cover instance, so is w′.

Proof. The structure of the words in EncVC only allows loops in the listing of
edges or in the listing of single vertexes. Adding additional edges to a graph
introduces more edges, which have to be covered, and therefore never makes the
graph more likely to contain a vertex cover. Therefore, removing edges from
the graph, which are by assumption already covered by a vertex cover, yields
a graph which is also covered by the same vertex cover. Since not connected
vertexes doesn’t need to be considered while finding a vertex cover, adding or
removing them do not influence the existence of a vertex cover. Therefore, w′

is covered by the same vertex cover then w.
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This means that we only have to consider simple paths in condensed(A)
when looking for solvable VC instances.

Lemma 20. Let R ⊆ EncVC be a regular language accepted by the deterministic
finite automaton A. It is decidable whether L(condensed(A)) ∩VC 6= ∅.

Proof. To decide whether the intersection is empty or not, we enumerate
all finitely many words w1, w2, . . . , wn which are labels of accepting paths in
condensed(A). Since the problem Vertex Cover is in NP [GJ79], we can
test for each of the words wi in finite time whether wi ∈ VC. According
to Lemma 19, if for all words w1 to wn this is not the case, no other word
w ∈ condensed(A) is in VC. Therefore, the intersection L(condensed(A))∩VC
is not empty if and only if at least one wi ∈ VC which can be tested in finite
time.

Summarizing the previous lemmas yields a proof for the decidability of
intReg(VC).

Theorem 12. Let R be a regular language. It is decidable whether R ∩
Vertex Cover 6= ∅, i.e. intReg(Vertex Cover) is decidable.

Proof. Since R and EncVC are regular languages, we can assume w.l.o.g.
that R ⊆ EncVC. Let A be a deterministic finite automaton recognizing
R. Definitions 41 to 49 describe the computable construction of the au-
tomaton condensed(A). Lemma 16 together with Lemma 17 prove that
L(condensed(A)) ∩ VC 6= ∅ ⇔ R ∩ VC 6= ∅. Following Lemma 20 the ques-
tion L(condensed(A)) ∩VC 6= ∅ is decidable. Hence, we can decide whether
R ∩Vertex Cover 6= ∅ by construction the automaton condensed(A) and
testing whether L(condensed(A)) ∩VC 6= ∅.

6.2 Separating - Independent Set

While for the problem Vertex Cover merging vertexes of a graph made the
graph more likely to contain a vertex cover, for the problem Independent Set
we want to separate the vertexes from each other. The idea of separating is to
reference wherever possible a uniquely occurring vertex. A uniquely occurring
vertex has a degree of at most one and for a vertex of degree one, we can either
put the vertex itself or its neighbor in an independent set. We begin with a
formal definition of the NP-complete problem Independent Set (short IS)
[CFK+15].

Definition 50 (IS).
Given: A graph G = (V,E) and a positive integer k.
Question: Does G have an independent set V ′ of size at least k, i.e. is there
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a set V ′ ⊆ V with |V ′| ≥ k such that no two vertexes in V ′ are joined by an
edge?

We encode this problem in the same way we encoded Vertex Cover.

Definition 51. Every encoded IS-instance is a member of the regular set EncIS

defined by the regular expression a∗$(a∗# a∗$)∗(a∗$)∗.

We refer to Example 4 for an illustration of the encoding.

6.2.1 Construction

Again, we will construct from a given automaton A, an automaton condensed(A)
based on sets of representatives. In the accepted language L(condensed(A))
only finitely many words have to be considered, under which there is a solvable
IS-instance, if and only if there is one in the given language L(A). In the
last section we tried to merge vertexes and therefore joined edges such that
fewer vertexes can cover more edges. This time we are looking for preferably
large sets of vertexes which are not connected by edges. Our approach is to
disconnect edges by reading uniquely occurring vertex labels in the automaton
wherever possible. Therewith, we are reducing the degree of vertexes in the
graph, while we are increasing the number of vertexes appearing in the graph,
which makes it easier to find an independent set of the demanded size.

Since IS uses the same encoding as VC we will make use of the transition
sets defined in Definition 41, 45, and 47 but we will assign representatives in a
different way.

Since the bound k is a lower bound, we can just set it to the smallest
value possible for each group of words. Because the language is given by an
automaton, there is always a value for k smaller than |Q| meaning that we have
to look for independent sets with a size of at least |Q|. We will use this fact and
assign every vertex transition set Λq,q′ with a domain of size (|Q|+ 1) · |Q| and
define its set of representatives as the set of all words in this domain. Therewith,
we make sure that we can read at least |Q| different vertexes between q and q′

which can not be read between any other pair of states. For the transition sets
Sq,q′ we will proceed in a similar way, assigning them with domains of equal size
above the domains for the vertex transition sets. We will later see that these
sets of representatives are large enough such that L(condensed(A)) contains a
solvable IS-instance if and only if L(A) does.

We will now define sets of representatives for the transition sets Λq,q′

(Definition 41), Kq,q′ (Definition 45), and Sq,q′ (Definition 47).

Definition 52. For every transition set Kq0,q we define a finite set of represen-
tatives rep(Kq0,q) as

rep(Kq0,q) =
{

min
lex

(Kq0,q)
}
.
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Note that |min
lex

(Kq0,q)| ≤ |Q|.

Since we have to look for independent sets of size at most |Q| it is enough to
assign every infinite vertex transition set Λq,q′ with |Q|+1 unique representatives.
We need more than one representative, because vertexes read in between q
and q′ can be part of a loop and every time the loop is taken we want to
be able to read a uniquely occurring vertex. We need at most |Q| uniquely
occurring vertexes, read in the same side of an edge, to be able to construct an
independent set of size at least |Q|, namely the set of all those vertexes. The
additional “+1” vertex is needed in case the word is mention to have more than
|Q| occurrences of a label of a path between q and q′. In order to avoid loosing
the uniqueness of the other |Q| labels we add an additional lexicographical
largest label to the set of representatives, which should be read when more
than |Q| labels are needed. This element acts like a garbage reference which
will likely not be part of an independent set.

Since single loops in between q and q′ are at most of length |Q|, the elements
in Λq,q′ have a lexicographical distance of at most |Q|. Therefore, a domain of
(|Q|+ 1) · |Q| will contain at least |Q|+ 1 different words from Λq,q′ .

If the set Λq,q′ is finite we just assign all its member to the set of represen-
tatives.

Definition 53. We define for all vertex transition sets Λq,q′ sets of representa-
tives in the following way:
Order the sets Λq,q′ in an arbitrary but fixed way, such that Λσ(i) is the i-th Λ
set starting with i = 1. Then, we set

rep(Λσ(i)) :=



Λσ(i)

if |Λσ(i)| <∞,
Λσ(i) ∩ domain1(i · (|Q|2 + |Q|), (i+ 1) · (|Q|2 + |Q|)− 1)

if Λσ(i) = Λ1
q,q′ ,

Λσ(i) ∩ domain2(i · (|Q|2 + |Q|), (i+ 1) · (|Q|2 + |Q|)− 1)

if Λσ(i) = Λ2
q,q′ .

Where domain1(x, y) := {ax#, a(x+1)#, . . . , a(y−1)#, ay#} and
domain2(x, y) := {ax$, a(x+1)$, . . . , a(y−1)$, ay$} being the set of all ver-
texes with values between x and y which can be read in the first, respectively
second, position of an edge.

With the same argument, we assign the infinite single vertex transition sets
Sq,q′ with at least |Q| unique representatives. Here, we do not need the extra
garbage representative “+1” because reading the same non-connected vertex
twice adds no extra edge to the graph. We set the domains for rep(Sq,q′) above
the domains of rep(Λ) which is bounded by |Q|2 · (|Q|+ 1) · |Q| = |Q|4 + |Q|3.
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Definition 54. We define for all unconnected vertex transition sets Sq,q′ sets
of representatives in the following way:
Order the sets Sq, q′ in an arbitrary but fixed way, such that Sσ(i) is the i-th S
set starting with i = 1. Then, we set

rep(Sσ(i)) :=


Sσ(i) if |Sσ(i)| <∞,
Sσ(i) ∩ domain2(|Q|4 + |Q|3 + i · |Q|2,

|Q|4 + |Q|3 + (i+ 1) · |Q|2 − 1) otherwise.

Now we are able to construct the condensed automaton condensed(A) based
on the sets of representatives.

Definition 55. Let R ⊆ EncIS be a regular language and A = (Q,Γ, δ, q0, F )
be a deterministic finite automaton with L(A) = R. We define the condensed
automaton condensed(A) = (Q,Γ′, δ′, q0, F ) with

Γ′ =
⋃
q∈Q

rep(Kq0,q) ∪
⋃

q,q′∈Q

rep(Λq,q′) ∪
⋃

q,q′∈Q

rep(Sq,q′)

and ∀q ∈ Q : (q0, w, q) ∈ δ′ if w ∈ rep(Kq0,q)
∀q, q′ ∈ Q : (q, w, q′) ∈ δ′ if w ∈ rep(Λq,q′)

∀q, q′ ∈ Q : (q, w, q′) ∈ δ′ if w ∈ rep(Sq,q′) .

6.2.2 Correctness

In this section we will show for a given DFA A that there is a solvable Inde-
pendent Set instance in L(A) if and only if there is one in L(condensed(A)).
The proof is pretty similar to the VC case.

Lemma 21. Let R ⊆ EncIS be a regular language defined through the deter-
ministic finite automaton A = (Q,Γ, δ, q0, F ). If L(condensed(A)) ∩ IS 6= ∅,
then also R ∩ IS 6= ∅.

Proof. By construction L(condensed(A)) is a subset of L(A). Therefore, every
solvable IS instance in L(condensed(A)) is also in R.

Lemma 22. Let R ⊆ EncIS be a regular language defined through the de-
terministic finite automaton A = (Q,Γ, δ, q0, F ). If R ∩ IS 6= ∅, then also
L(condensed(A)) ∩ IS 6= ∅.

Proof. Let w ∈ R ∩VC. Then, w can be split up into factors

w = wkwe11we21we12we22 . . . we1mwe2mwv1wv2 . . . wvn



60 CHAPTER 6. MERGE, SEPARATE, AND REPLACE

where wk ∈ Kq0,qe11 , we1i ∈ Λ1
q
e1
i
,q
e2
i

, we2i ∈ Λ2
q
e2
i
,q
e1
i+1

, and wvj ∈ Sqvj ,qvj+1
. We will

show that there is a word w′ ∈ L(condensed(A)) which can be analogously
partitioned into

w′ = wk
′we11

′we21
′we12

′we22
′ . . . we1m

′we2m
′wv1

′wv2
′ . . . wvn

′

by replacing the sub-words of w by elements of the sets of representatives
of the transition sets they appear in. Let Gw be the graph encoded in w.
By assumption, G contains an independent set of size at least k where k
is the number encoded in wk. Since rep(Kq0,qe11 ) is the smallest element in

Kq0,qe11 it holds for the single element wk
′ ∈ rep(Kq0,qe11 ) that k′ ≤ k. There-

fore, G also contains an independent set of size at least k′. The sub-words
we11

′, we21
′, we12

′, we22
′, . . . , we1m

′, we2m
′ are chosen from the sets of representatives

rep(Λ1
q
e1
i
,q
e2
i

) and rep(Λ2
q
e2
i
,q
e1
i+1

) according to Algorithm 6.

Algorithm 6 Assignation of sub-words we
′ to sub-words we.

OccuringΛ← List(Λl′

q,q′ | wel′l ∈ Λq,q′ for some l, l′)

for j ← 1 to |OccuringΛ| do
Counter ij ← 0

end for
for all we ∈ Ew := {we11 , we21 , we12 , we22 , . . . , we1m , we2m} do

j ← Number in OccuringΛ of Λj in which we occurs.
if |Λj| <∞ then

w′e ← we
else

if ij < |rep(Λj)| then
ij ← ij + 1
w′e ← ij-th element of rep(Λj)

else
w′e ← max

lex
(rep(Λj))

end if
end if

end for

So, we sequentially replace the sub-words occurring in an infinite transition
set Λ through uniquely occurring representatives, while we keep track of the
already assigned words through the counters ij. If in w there are more sub-
words from Λ then representatives in rep(Λ) we replace the surplus sub-words
all by the lexicographical maximal representative.

The sub-words wvj ∈ Sqvj ,qvj+1
are replaced by representatives wvj

′ ∈
rep(Sqvj ,qvj+1

) in a similar way with Algorithm 6. The difference is, that
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we form the list OccuringS over the transition sets S and iterate over
Vw := {wv1wv2 . . . wvn} instead of Ew. By this renaming we can lose some
unconnected vertexes if we have more then |Q| sub-words representing uncon-
nected vertexes in the same transition set S. But, since k′ ≤ k with k′ ≤ |Q|
there are still enough unconnected vertexes in w′ left which form an independent
set of size at least k′.

It remains to show that, when Gw contained an independent set of size at
least k, replacing the vertexes which are part of edges maintains the existence
of an independent set of size at least k′. We will prove this statement separately
in Lemma 23.

All together, beginning with a word w ∈ L(A) ∩ IS we have constructed a
word w′ ∈ L(condensed(A)) ∩ IS.

Lemma 23. Let G = (V,E) be a graph containing a maximal independent set
V ′ of size k. Let v ∈ V be a vertex of degree d. Let G? = (V ?, E?) be G where
v has been replaced in every edge containing v through one of d new vertexes
v1, . . . , vd such that v1, . . . , vd have only one appearance in the description of
G?. Then, G? contains an independent set of size at least k.

Proof. Since G has a maximal independent set V ′, either v or at least one of
its neighbors is contained in V ′. We make a case distinction on the degree of v
and its membership in V ′.

• If d = 1 and v ∈ V ′, then the only appearance of v will be replaced by
v1 which also has a degree of 1. Therefore, V ′′ = (V ′\{v}) ∪ {v1} is an
independent set of G? of size k.

• If d = 1, v /∈ V ′, and {u, v} ∈ E is the only edge in which v appears.
Then, v will be replaced by v1 and {u, v} will be replaced by {u, v1} such
that v1 has also a degree of 1. Since v /∈ V ′ and the degree of v is 1, we
have u ∈ V ′ and therefore V ′′ = V ′ is an independent set of G? of size k.

• If d > 1, v ∈ V ′, and v is part of the edges {u1, v}, . . . {ud, v} ∈ E. Then,
v will be replaced by v1, . . . , vd with vi 6= vj such that the edges containing
v are replaced by {u1, v1}, {u2, v2}, . . . , {ud, vd}. Since v ∈ V ′ we know
that u1, . . . , ud /∈ V ′ and therefore V ′′ = (V ′\{v}) ∪ {v1, . . . , vd} is an
independent set of G? of size k + (d− 1).

• If d > 1, v /∈ V ′, and v is part of the edges {u1, v}, . . . {ud, v} ∈ E.
Then, v will be replaced by v1, . . . , vd with vi 6= vj such that the edges
containing v are replaced by {u1, v1}, {u2, v2}, . . . , {ud, vd}. Since v /∈ V ′
the set V ′′ = V ′ is an independent set of G? of size k.
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6.2.3 Decidability

We will now prove that it is decidable whether L(condensed(A)) ∩ IS is empty
or not. This means that we can decide whether L(condensed(A)) contains
a solvable Independent Set instance. Therefore, we will show that it is
sufficient to consider only paths with a length up to l = 3|Q|5 + 3|Q|4 in the
automaton condensed(A). First, we will elucidate the value of the bound l.

We have up to |Q|2 different transition sets K with up to |Q| different
representatives all together. The up to 2|Q|2 transition sets Λ have sets of
representatives with each up to |Q|2 + |Q| elements (in the infinite case and |Q|2
elements in the finite case). The up to |Q|2 unconnected vertex transition sets
have sets of representatives with each up to |Q|2 elements. If we want to read
all the different above described representative on one single path, we might
have to read up to |Q| other characters in order to read one new representative.

Definition 56. A path containing all above described representatives might
have to have a length of at least l :=

|Q| ·
([
|Q|2 · |Q|

]
+
[
(2|Q|4 + 2|Q|3)

]
+
[
|Q|4

])
= |Q| ·

(
3|Q|4 + 3|Q|3

)
= 3|Q|5 + 3|Q|4

in the automaton condensed(A) = (Q,Γ′, δ′, q0, F ) consisting of letters from Γ′

(see Definition 55).

Lemma 24. Let A be a deterministic finite automaton with L(A) ⊆ EncIS
and w ∈ L(condensed(A)) with |w| > l. If w is a solvable Independent Set
instance, then there is a word w′ ∈ L(condensed(A)) with w′ ≤ l and w′ is a
solvable Independent Set instance.

Proof. We just explained that l is an upper bound on the length of a path
needed to read all representatives of all sets of representatives in one long word.
If a word w is longer than this threshold l, then w must contain multiple copies
of at least one sub-word which is already contained in w and does not bring
new vertexes or edges to the graph. Therefore, the word w′ without those
redundant copies describes the same graph as w and so w′ with |w′| ≤ l is a
solvable IS instance if w is.

This means that it is sufficient to consider only paths of length up to l in
the automaton condensed(A).

Lemma 25. Let R ⊆ EncIS be a regular language accepted by the DFA A. It
is decidable whether L(condensed(A)) ∩ Independent Set 6= ∅.
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Proof. Lemma 24 states that, if there is a word in L(condensed(A)) ∩
Independent Set, there is also a word in L(condensed(A)) ∩
Independent Set with size at most l. Therefore, we can decide the
emptiness of the intersection by enumerating all finitely many words of length
up to l and test each of them for membership in IS. Since IS is in NP [GJ79]
this can be done in finite time. If none of those words is contained in IS
the inversion of Lemma 24 states that no other word in L(condensed(A)) is
contained in IS.

We are now able to state the main result of this section.

Theorem 13. Let R be a regular language. It is decidable whether R ∩
Independent Set 6= ∅, i.e. the problem intReg(Independent Set) is de-
cidable.

Proof. Since R and EncIS are regular languages, we can assume w.l.o.g. that
R ⊆ EncIS. Let A be a DFA recognizing R. The Definitions 41, 45,
47, and 45 to 55 describe constructively the construction of the automa-
ton condensed(A). Therefore, condensed(A) can be computed by an algo-
rithm on input A. Lemma 21 in conjunction with Lemma 22 show that
L(A) ∩ IS 6= ∅ ⇔ L(condensed(A)) ∩ IS 6= ∅. Therefore, we can decide the
problem based on the automaton condensed(A). Finally, Lemma 25 states that
L(condensed(A)) ∩ IS 6= ∅ is decidable by checking finitely many words. This
yields a deciding procedure for the problem intReg(Independent Set).

While we can decide the intReg-problem for Independent Set, we have
no decidability results for the complementary problem Clique.

6.3 Replacing - Knapsack

Beside merging and separating, we want to present the technique of replacing
in order to show decidability of the intReg-problem. The idea of replacing is
to replace elements of a problem instance through the easiest elements we can
read in this position. The difference to the previous techniques is that we do
not focus on whether the replacing elements are identical or disjunct. We will
demonstrate this approach by proving the decidability of the intReg-problem
for Knapsack.

We begin by a formal definition of the NP-complete problem [GJ79].

Definition 57 (Knapsack).
Given: A set U of items with a weight w(u) ∈ Z+ and a value v(u) ∈ Z+ for
every item u ∈ U , and positive integers W and V .
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U ′ w(u) ≤ W and∑

u∈U ′ v(u) ≥ V .
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The given construction will also work for the problem Integer Knap-
sack [GJ79] where the question is whether there exists an assignment of
non-negative integers c(u) to the elements u ∈ U with

∑
u∈U c(u)w(u) ≤ W

and
∑

u∈U c(u)v(u) ≥ V . For this problem it will even be enough to consider
simple paths in the automaton condensed(A) defined in Definition 61.

We will encode the problem Knapsack in the following way. First, the
weight bound W is encoded as a unary string of a’s separated by a $-sign from
the following string of a’s encoding the value bound V . Then, the items of U
are listed, separated through $ signs. An element u is represented by a string
of a’s encoding its weight w(u), followed by # and a string of a’s encoding
its value v(u). We will refer to the set of all correctly encoded Knapsack
instances, regardless if they are solvable or not, as EncKS.

Definition 58. Every encoded Knapsack instance is part of the regular set
EncKS defined through the regular expression

a∗$a∗$ (a∗#a∗$)∗ .

When we refer to the set Knapsack, we regard the problem encoded in
the described way. Example 5 illustrates the given encoding.

Example 5. Consider the following Knapsack instance.

W := 15

V := 32

U := {u1, . . . , u5}
w(u1) = 12, w(u2) = 1, w(u3) = 3, w(u4) = 8, w(u5) = 4

v(u1) = 2, v(u2) = 5, v(u3) = 17, v(u4) = 8, v(u5) = 2

The corresponding encoding w ∈ EncKS is

w := a15$a32$a12#a2$a1#a5$a3#a17$a8#a8$a4#a2$.

6.3.1 Construction

Following the previous pattern, we will give a construction of the automaton
condensed(A) based on a given DFA A. The automaton condensed(A) will have
the property L(condensed(A)) ∩Knapsack 6= ∅ ⇔ L(A) ∩Knapsack 6= ∅
and only finitely many words in condensed(A) have to be considered in order
to find a word in L(condensed(A)) ∩Knapsack if one exists. We will define
transition sets for each of the sub-words W and V , as well as for the item
values v and weights w.
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Definition 59. Let A = (Q,Γ, δ, q0, F ) be a deterministic finite automaton
with L(A) ⊆ EncKS. For every pair of states q0, q ∈ Q consisting of the initial
state q0 and an arbitrary state q, we define the transition set for W as

Wq0,q := {x ∈ L(a∗$) | δ∗(q0, x) = q}

consisting of every value for W which can be read in between the states q0 and
q. Further, for every pair of states q, q′ ∈ Q we define the following sets

Vq,q′ := {x ∈ L(a∗$) | ∃q1 ∈ Q : δ(q1, $) = q ∧ δ∗(q, x) = q′} ,
Λw
q,q′ := {x ∈ L(a∗#) | ∃q1 ∈ Q : δ(q1, $) = q ∧ δ∗(q, x) = q′} ,

Λv
q,q′ := {x ∈ L(a∗$) | ∃q1 ∈ Q : δ(q1,#) = q ∧ δ∗(q, x) = q′} .

Where Vq,q′ is the transition set for V consisting of every value for V which can
be read in between q and q′. The transition sets Λw

q,q′ and Λv
q,q′ describe the

sets of item weights and values which can be read in between the two states.

Next, we want to assign the transition sets with sets of representatives.
Therefore, observe that a Knapsack instance is easier to solve, if the bound
V is as low as possible, while W is large enough. If we are free to pick a
Knapsack item from a set of items, we are looking for an element with the
smallest possible weight and a value that is best above V . Therefore, we
will pick the minimal elements of Vq,q′ and Λw

q,q′ as representatives. Since the
transition sets are defined by sub-automaton of A, there is a minimal element
of size at most |Q| in every transition set. So, we only have to reach a target
value V ≤ |Q| with items with weights below |Q|. Even if those item have
only an item value of 1, picking |Q| of them will be enough to hit the target
value. Therefore, a weight bound of |Q|2 will be enough to allow the selection
of enough items to hit the target value. Since we know that V is bounded
by |Q|, any item value above |Q| is enough to solve the Knapsack instance,
if this item can be picked. These considerations lead us to the definition of
representatives for the transition sets. In contrast to the previous constructions,
the sets of representatives will all be singleton sets and hence we will define
single representatives (instead of sets) for each transition set.

Definition 60. We assign representatives for the transition sets Wq0,q, Vq,q′ ,
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Λw
q,q′ , and Λv

q,q′ for all q, q′ ∈ Q in the following way.

rep(Vq,q′) := min
lex

(Vq,q′),

rep(Λw
q,q′) := min

lex
(Λw

q,q′),

rep(Wq0,q) :=

max
lex

(Wq0,q) if |Wq0,q| <∞,

min
lex

({x ∈ Wq0,q | |x| > |Q|2}) otherwise,

rep(Λv
q,q′) :=

max
lex

(Λv
q,q′) if |Λv

q,q′| <∞,

min
lex

({x ∈ Λv
q,q′ | |x| > |Q|}) otherwise.

Now we are able to build the automaton condensed(A) based on the assigned
representatives.

Definition 61. Let R ⊆ EncKS be a regular language and A = (Q,Γ, δ, q0, F )
be a deterministic finite automaton with L(A) = R. We define the condensed
automaton condensed(A) = (Q,Γ′, δ′, q0, F ) with

Γ′ =
⋃
q∈Q

{rep(Wq0,q)} ∪
⋃

q,q′∈Q

{rep(Vq,q′)}∪⋃
q,q′∈Q

{
rep(Λw

q,q′)
}
∪
⋃

q,q′∈Q

{
rep(Λv

q,q′)
}

and ∀q ∈ Q : (q0, x, q) ∈ δ′ if x = rep(Kq0,q)
∀q, q′ ∈ Q : (q, x, q′) ∈ δ′ if x = rep(Vq,q′)
∀q, q′ ∈ Q : (q, x, q′) ∈ δ′ if x = rep(Λw

q,q′)

∀q, q′ ∈ Q : (q, x, q′) ∈ δ′ if x = rep(Λv
q,q′) .

6.3.2 Correctness

The automaton condensed(A), constructed from the DFA A, accepts a solvable
Knapsack instance if and only if A does.

Lemma 26. Let R ⊆ EncKS be a regular language, defined through the
deterministic finite automaton A = (Q,Γ, δ, q0, F ). If L(condensed(A)) ∩
Knapsack 6= ∅ then also R ∩Knapsack 6= ∅.

Proof. By construction, L(condensed(A)) is a subset of L(A). Therefore, every
solvable Knapsack instance in L(condensed(A)) is also in R.

Lemma 27. Let R ⊆ EncKS be a regular language, defined through the deter-
ministic finite automaton A = (Q,Γ, δ, q0, F ). If R∩Knapsack 6= ∅, then also
L(condensed(A)) ∩Knapsack 6= ∅.
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Proof. Again, we pick a word x ∈ R ∩Knapsack and split it up into factors

x = xWxV xw1xv1xw2xv2 . . . xwnxvn

where xW ∈ Wq0,qV , xV ∈ VqV ,qw1
, xwi ∈ Λw

qwi ,qvi
, and xvi ∈ Λv

qvi ,qwi+1
. We will

replace the sub-words in x with sub-words xi
′ such that the word

x′ = xW
′xV
′xw1

′xv1
′xw2

′xv2
′ . . . xwn

′xvn
′

is in L(condensed(A)) ∩Knapsack.

Let V be the value bound encoded in xV . Let V ′ be the single value bound
encoded in rep(VqV ,qw1

), by definition V ′ ≤ V , hence if there is a collection of
items U ′ from x with a summed value above V , this sum is also above V ′. So
we set xV

′ := rep(VqV ,qw1
).

Let wi encoded in xwi be the weight of the i-th element ui from x. If
ui ∈ U ′ then (U ′\{ui}) ∪ {ui′} with ui

′, defined through v(ui
′) := v(ui), and

w(ui
′) := rep(Λw

qwi ,qvi
) also fulfills the knapsack conditions. If ui /∈ U ′ then U ′

remains unchanged by replacing wi by wi
′ encoded in rep(Λw

qwi ,qvi
). Therefore,

we set x′wi := rep(Λw
qwi ,qvi

).

Let vi encoded in xvi be the value of the i-th element ui from x and let vi
′

be the value of element ui
′ encoded in rep(Λv

qvi ,qwi+1
). If vi > vi

′ and ui ∈ U ′,
then U ′′ := (U ′\{ui}) ∪ {ui′} is a solution of the knapsack instance x′ when
we set xvi′ := rep(Λv

qvi ,qwi+1
) since vi

′ > |Q| and V ′ ≤ |Q|. If ui /∈ U ′, then U ′

remains unchanged by replacing vi by vi
′.

Let W be the weight bound encoded in xW . We replaced V and every item
weight wi by a value smaller then |Q|. Since x has a solution U ′ we can assume
w.l.o.g. that U ′ contains no element with a zero item value. Let W ′ be the
weight bound encoded in rep(Wq0,qV ). If W > W ′, then W ′ > |Q|2 and hence
large enough so that

∑
u∈U ′′ v(u) ≥ V ′ ≤ |Q| and

∑
u∈U ′′ w(u) ≤ W ′ where U ′′

contains the replacements of up to |Q| elements of U ′, which all have a non-zero
value and a weight below |Q|. So, we set xW

′ := rep(Wq0,qV ).

Therefore, we have found a word x′ ∈ L(condensed(A)) which also encodes
a solvable Knapsack instance.

6.3.3 Decidability

We will now show that we can decide whether L(condensed(A)) contains a
solvable Knapsack instance. Therefore, we will prove that we only have to
consider finitely many words in L(condensed(A)).

Lemma 28. Let A be a DFA with L(A) ⊆ EncKS and x ∈ L(condensed(A))
with |x| > |Q|2. If x ∈ Knapsack, then there is a word x′ ∈ L(condensed(A))∩
Knapsack with x′ ≤ |Q|2.
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Proof. Since for every word in L(condensed(A)) the value bound V is at most
|Q| we have to pick at most |Q| copies of an item to be able to reach V . In order
to read an item twice, we might need to read up to |Q| other letters until we
reach the state again from which we can read the item. Hence, a path of length
up to |Q|2 is long enough to read up to |Q| copies of any element, if possible.
Adding more then |Q| redundant items to the Knapsack instance in total does
not help finding a solution. Therefore, if we set U ′′ to the first |Q| elements of
U ′ with a non-zero item value, removing all labels over loops in x which do not
contain a word in U ′′ results in a Knapsack instance x′ ∈ L(condensed(A))
with a solution U ′′ and x′ ≤ |Q|2.

This means that only words with a length up to |Q|2 have to be considered
in L(condensed(A)). For the problem Integer Knapsack we even have to
consider only words with a length of up to |Q| since we can pick one item
multiple times.

Lemma 29. Let R ⊆ EncKS be a regular language accepted by the DFA A. It
is decidable whether L(condensed(A)) ∩Knapsack 6= ∅.

Proof. Lemma 28 states that, if there is a solvable Knapsack instance in
L(condensed(A)), there is one with a size up to |Q|2. Therefore, we can
enumerate the finitely many words with a size below that threshold under
which there is a word w ∈ Knapsack if there is one in L(A). Since the problem
Knapsack is in NP [GJ79], we can test for every word, whether it is contained
in Knapsack in finite time. Therefore, we have found a deciding procedure
for the question whether L(condensed(A)) ∩Knapsack 6= ∅.

This leads us to the main result of this section.

Theorem 14. Let R be a regular language. It is decidable whether R ∩
Knapsack 6= ∅, i.e. the problem intReg(Knapsack) is decidable.

Proof. W.l.o.g. we may assume that R ⊆ EncKS since both language are regular.
Let A be a DFA recognizing A. There is an algorithm which given the DFA A
computes the finite automaton condensed(A) as described by the Definitions
59 to 61. Lemma 26 and 27 together state that L(A) ∩ Knapsack 6= ∅ ⇔
L(condensed(A))∩Knapsack 6= ∅. The question whether L(condensed(A))∩
Knapsack 6= ∅ is decidable following Lemma 29. Hence, we can decide
whether L(A)∩Knapsack 6= ∅ by constructing condensed(A) and test whether
L(condensed(A)) ∩Knapsack 6= ∅.
Corollary 2. Let R be a regular language. It is decidable whether R ∩
Integer Knapsack 6= ∅, i.e. the problem intReg(Integer Knapsack) is
decidable.

Proof. The same construction works for the problem of Integer Knapsack,
where items can be picked multiple times.



Chapter 7

Discussion

We have proven that the listed problems on the left side of Table 7.1 have a
decidable regular intersection emptiness problem, while the problems on the
right side have an undecidable intReg-problem.

Table 7.1: List of problems with a decidable, respectively undecidable intReg-
problem.

Decidable intReg Undecidable intReg

Unary-Shuffled≡Stringε Shuffled≡RegEx

Sequential≡Stringε Shuffled≡Stringε

Unary-Sequential≡Stringε Machine Language
SAT Bounded Tiling
k-TQBF Corridor Tiling
True Quantified Boolean Formula Bounded PCP
Integer Linear Programming
Vertex Cover
Independent Set
Knapsack
Integer Knapsack

Table 7.2 orders the problems from Table 7.1 according to their complexity
classes.
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Table 7.2: Problems with a proven decidable (undecidable) intReg-problem,
ordered by their complexity.

Complexity-
Class

Problem intReg

L

Shuffled≡Stringε undecidable
Unary-Shuffled≡Stringε decidable
Sequential≡Stringε decidable
Unary-Sequential≡Stringε decidable

NL Machine Language for NL undecidable

NP

Machine Language for NP undecidable
Bounded Tiling undecidable
Bounded PCP undecidable
SAT decidable
Integer Linear Programming decidable
Vertex Cover decidable
Independent Set decidable
Knapsack decidable
Integer Knapsack decidable

Polynomial
Hierarchy

k-TQBF decidable

PSPACE

Machine Language for PSPACE undecidable
Corridor Tiling undecidable
Shuffled≡RegEx undecidable
True Quantified Boolean Formula decidable

To prove undecidability of the intReg-problem for variations of the Machine
Language, for Bounded Tiling, and for Bounded PCP we used the fact
that all of these problems are restricted versions of undecidable problems. The
problems are made decidable by adding an artificial limit to the input, which
restricts the possibly infinite set of potential solutions to a finite set. In order
to show intReg-undecidability, we created a regular language R based on a fixed
instance of the undecidable problem variant, containing the instance together
with every possible limit-value. If R intersected with the restricted problem
has a nonempty intersection, we have found a limit to the solution and hence
the instance is in the undecidable problem variant. Therefore, we have found a
reduction from the undecidable problem variant to the intReg-problem of the
restricted decidable problem variant by constructing a regular language which
contains every limit-value.

In the case of Shuffled≡RegEx we have used the semantics of the empty
word symbol ε to construct regular expression which describe possible solutions
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of a PCP instance. We used ε as a padding character in a shuffled encoding
of words created from the elements of the two PCP lists. The evaluation
of the regular expressions naturally removed the ε’s from these words, such
that two regular expressions described the same language if and only if their
language encoded a solution of the PCP instance. Since we didn’t make use
of the union and star operation of regular expression, the same proof also
worked for string equivalence modulo a padding character, described in the
problem Shuffled≡Stringε . We have seen that the undecidability of this
problem strongly relied on the shuffled encoding and depends on the size of
the alphabet over which the strings are build. We showed that the problem
becomes decidable for an un-shuffled encoding as well as for an alphabet of
size one (plus padding symbol).

In chapter 4 we presented decidability proofs for the intReg-problem of SAT,
Lk-TQBF (which is the problem of True Quantified Boolean Formula
with up to k alternating quantifier blocks), and TQBF which has been
published in the article Deciding regular intersection emptiness of complete
problems for PSPACE and the polynomial hierarchy [GKLW18] by Demen
Güler, Andreas Krebs, Klaus-Jörn Lange, and Petra Wolf. In the proof an
automaton condensed(A) is constructed from a given DFA A, such that only
finitely many words in L(condensed(A)) have to be considered in order to find
a true formula in L(A). In a way L(condensed(A)) contained the finitely many
most promising words in L(A) under which a true formula is contained if and
only there is one in the whole language L(A). To construct condensed(A) we
defined so-called transition sets for every pair of states of A which described
the set of all literals which can be read in-between those two states. Then,
we picked for every transition set finitely many representatives such that
existentially quantified variables are preferred to occur uniquely in the formula,
while references to universally quantified variable are preferred to point to the
same variable. Finally, we constructed the automaton condensed(A) based on
the finitely many representatives for all finitely many transition sets.

We adapted this construction to prove decidability of the intReg-problem
for Integer Linear Programming in chapter 5. Here, we iterated the
procedure of finding representative twice. We first considered transition sets for
coefficients and assigned representatives to them. Then, we regarded transition
sets for whole inequations and again assigned representatives. Based on the
finitely many representatives for inequations, we constructed the automaton
condensed(A) and showed that we only have to consider finitely many words
in L(condensed(A)) under which there is a solvable ILP if and only if there is
one in the original automaton.
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In chapter 6 we elaborated the three techniques merging, separating, and
replacing which has been used in the previous constructions to assign repre-
sentatives. In the merging technique one representative for every combination
of transition sets sharing at least one element is chosen. So, wherever the
same problem-item can be read in the given automaton, there will be a word
in L(condensed(A)) with the same reference in all of these positions. The
technique was demonstrated on the problem Vertex Cover. It pointed out,
that under the chosen encoding, a Vertex Cover instance becomes easier to
solve, if vertex references point to the same vertex, resulting in merged edges.

The representatives in the separating techniques have been chosen in a way
that problem items occur at one position in the instance only. The technique
was demonstrated on the problem Independent Set where separating vertex
references led to disconnected edges. A separated vertex reference replaced the
original vertex by a number of copies corresponding to the old degree of the
vertex. Every vertex copy appeared in one edge previously connected to the
old vertex. Therefore, one vertex with n edges was replaced by n vertexes of
degree one. Hence, separating vertexes made an Independent Set instance
easier to be solved.

In the replacing techniques, the problem items were replaced by items
which made the instance predictably easier. Here, it did not matter whether
several transition sets shared representatives or not, so the replacement of an
item was independent from the other items of the instance. A construction
for the problem Knapsack was provided as an example for this technique.
A Knapsack instance is easier to be solved if it has a preferably huge
weight-bound and huge item-values while the value-bound and the item-weights
should be low. Altering those values in the desired direction made the
Knapsack instance predictably easier.

The three presented techniques give an insight in the nature of NP-complete
problems in a way that some problems are getting predictably easier if we
have the possibility to exchange items of the problem. Problems like Vertex
Cover are getting easier if we merge item references to the same problem
item, while problems like Independent Set are getting easier if we separate
the item references. While we can predict how the solvability of instances of
Independent Set changes by replacing items, we have no results for the
complementary problem of Clique. We expect a decidability result of its
intReg-problem by using the merging techniques but the construction does not
seem to be easy. The problem Knapsack forms a third group of problems
where items can be replaced by predictably easier items independent of other
problem items. The presented problems with an undecidable intReg-problem
form a fourth group of problems, where replacing problem items does not
simplify the problem in a predictable way. This means for example, that we
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can not exchange tiles in Bounded Tiling or list elements in Bounded
PCP in a constructive way to make the problem easier.

The described four groups of NP-complete problems and their corresponding
techniques seem to give an interesting insight in the different nature of NP-
complete problems. Examining more NP-complete problem in order to prove
or disprove the decidability of their intReg-problem could lead to an interesting
segmentation of the class of NP-complete problems. It could also lead to a
finer differentiation of this class along the four groups of problems. Finding
more techniques to prove decidability or undecidability of the intReg-problem
would also help understanding the different nature of NP-complete problems,
while they are all similar regarding their complexity.

The described techniques can also help in the task of finding a solvable
problem instance in a given infinite set of instances when there is some structure
in the set. We suggest that our techniques are not limited to sets of regular
languages. For instance our constructions could also work for non-regular
transition sets. For example if the transition sets for a language of Knapsack
instances are not regular, we should still be able to find finite sets of represen-
tatives as long as the transition sets themselves are connected in some “regular
way”.

An other task for further research is to develop more techniques to prove
undecidability of the intReg-problem. So far, the only undecidability result for
intReg for “non-artificial” problems is obtained by using a shuffled encoding
of the equivalence problem for regular expressions. It would be desirable to
have undecidability results for sequentially encoded “natural” problems. This
circumstance brings us to the question of encoding. A threshold of decidability
seems to be whether the problem is encoded sequentially or shuffled. This
aspect could be probed for the problems with a proven decidable intReg-problem
in a sequential encoding. For some intReg-problems, an other threshold of
decidability is the size of the alphabet as it is also the case for issues in other
areas like the equivalence of two context-free languages given by grammars.
While the equivalence of context-free languages in general is undecidable, every
CFL over an unary alphabet is already regular and hence the equivalence
problem for those kinds of CFL’s is decidable [HU69]. Finally, we hope that
the investigation of the decidability of the intReg-problem will lead to a generic
criteria of problems which determines the decidability of the corresponding
intReg-problem. This criteria might as well define a structure on the set of
NP-complete languages graduating this class into subclasses.
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