
Generalized Synchronization and

Intersection Non-Emptiness of

Finite-State Automata

Dissertation

dem Fachbereich IV der Universität Trier

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von

M.Sc. Petra Wolf

November 2021

Dissertation

Generalized Synchronization and

Intersection Non-Emptiness of

Finite-State Automata

vom Fachbereich IV der Universität Trier

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

M.Sc. Petra Wolf

Erster Gutachter: Prof. Dr. Henning Fernau,

Universität Trier

Zweiter Gutachter: Prof. Dr. Markus Holzer,

Justus-Liebig-Universität Gießen

Eröffnung des Promotionsverfahrens am 10.11.2021.

Wissenschaftliche Aussprache am 20.01.2022.

Erschienen in Trier, 2022.

ii

Scientific Environment

The author has carried out the research reported in this thesis at Universität Trier,

Fachbereich IV, Informatikwissenschaften, Professur Theoretische Informatik.

During the work on this thesis, starting from December 1’st 2018, the author was fully

funded by Deutsche Forschungsgemeinschaft (DFG), project ‘Modern Aspects of Com-

plexity of Formal Languages’, Project number 407073110, FE560/9-1.

The author is deeply grateful to the DFG for this support.

During 2020 and 2021 the author and her supervisor Henning Fernau from Univer-

sität Trier were part of a collaboration with Emmanuel Arrighi and Mateus de Oliveira

Oliveira from the University of Bergen, Norway. This collaboration was supported by

Deutscher Akademischer Austauschdienst (DAAD), Programm des Projektbezogenen

Personenaustauschs (PPP), with the project number DAAD PPP 57525246 on the Ger-

man side, and on the Norwegian side by IS-DAAD, project number 309319.

All collaborators of the project are deeply grateful to the DAAD for this support.

iv Scientific Environment

Academic CV of the Author

While the author of this thesis published her research papers under the name Petra Wolf,

the full name of the author is Petra Henrike Karola Wolf.

The academic career of the author is shaped by the following milestones.1

Academic Career

The German grading-scale reaches from 4.0 (barely sufficient) to 1.0 (best possible grade).

Abitur High School Diploma with Award obtained on May 26’th 2011 at Technical

High School Balingen, Germany, with overall grade 1.0.

B. Sc. Bachelor of Science in Computer Science obtained on December 1’st 2016 at

Eberhard Karls Universität Tübingen, Germany, with overall grade 1.3.

M. Sc. Master of Science in Computer Science with Distinction obtained on Octo-

ber 12’th 2018 at Eberhard Karls Universität Tübingen, Germany, with overall

grade 1.0.

PhD Since December 1’st 2018 PhD Student at Universität Trier, Germany, under

the supervision of Prof. Dr. Henning Fernau.

1This is a formal requirement of Universität Trier.

vi Academic CV of the Author

Acknowledgments

First of all, I owe my deepest thanks to my supervisor, Henning Fernau. You helped

me to develop my potential, gave me the freedom I needed and always trusted that I

will master the assigned tasks. I am proud to say that I have not disappointed you.

Especially, I am deeply grateful for you always taking time for me whenever I called you

and that you always found a solution to any problems that arose. I learned a lot from

you not only with respect to research but also about the scientific world. We were an

awesome team in both research and student supervision! Thank you for everything and

I hope we keep on collaborating :)

I am also deeply grateful to Markus Holzer for the work we did together and for agreeing

to review this thesis. I am a huge fan of your work which inspired me at the beginning

of my PhD and which was always a great example for me. I learned a lot from you and

hope that we keep on working together.

I am also very grateful to Markus L. Schmid for taking care of me when I arrived in

Trier as a new PhD student and for helping me to adapt to the new environment.

A special thanks go to the mentors who had a major impact on my journey through

life that has led me to this point. The first to mention here is Christine Heil who was

my class teacher in high school and the first to believe in my potential. You taught me

to believe in myself and that effort is rewarded. I would not have accomplished any of

my achievements without the things you taught me! The next mentor who had a big

impact on my life was Britta Dorn who was the supervisor of my Bachelor thesis. With

your courageous and innovative teaching concepts you got me excited about science and

research. Thank you a lot! I hope you keep on igniting the interest of young people

for science and math! I also want to sincerely thank Sebastian Schöner who was my

tutor in plenty of theory classes during my bachelor’s and master’s study. You have

always impressed me with your extensive knowledge and have strengthened my interest

in theoretical computer science. Last but not least I owe them my deepest respect and

gratitude to my mentor Klaus-Jörn Lange. Words cannot express how grateful I am to

you for everything you have done for me and what a great influence you have had on

viii Acknowledgments

my life. You paved my way into science. Thanks to the trust that you have shown me,

I was able to learn to be a teacher and a researcher.

An enrichment of my life are the co-authors who became friends along the way. Especially

to mention here are Emmanuel Arrighi, Nils Morawietz, Ismaël Jecker, and Nicolas

Mazzocchi. I enjoyed working with you guys so much and I hope that our friendship

lasts even in case our scientific paths might diverge.

I am also very grateful to Mateus de Oliveira Oliveira for the plenty projects and great

work we did together and are still doing. You are a great enrichment to any project

and there is still so much I can learn from you. I am also very thankful to the German

Academic Exchange Service who generously supported our collaboration with the grand

DAAD PPP 57525246 / IS-DAAD 309319.

I am deeply grateful to Deutsche Forschungsgemeinschaft (DFG) for funding my position

and all of my research done in the last three years with the DFG project FE560/9-1.

A source of great joy during my time in Trier were my students. Here, I want to

explicitly mention Kevin Goergen, Sven Fiergolla and Patrick Neises. Our Quantum

‘Selbsthilfegruppe’ was a lot of fun and helped all of us to dig deeper in the field until

we finally reached the frontier of new research and broke through it! Further, my special

thanks go to Kevin and Sven who supported the group and me in teaching and research

with their work as a student assistant.

A steady source of joy and energy were my fellow campaigners at the joined Scientists

For Future group of the Universität Trier and Hochschule Trier of which I have been an

active member since it was founded. Please keep on with your great work as science must

be heard in society! I am particular grateful for the success of the Lectures For Future

series which I organized together with Rebekka Kanesu and Tobias Kranz. Thanks a lot

Rebekka and Tobias for the great work we did together and for all of your support!

I would not be the person I am today without the friends I met during my studies and

who have accompanied me on my way through life to this day. I am in particular grateful

to Thomas Stüber, Jonas Lingg, Marcel Früh, Yves Röhm, and Ruth Dobrota. You are

truly an enrichment for my life!

Finally, I would like to thank everyone else I have worked with over the past three years.

Ultimately, none of this would have been possible without my parents to whom I owe

my life and who have always supported me. Thank you for everything!

Abstract

The main focus of this work is to study the computational complexity of generalizations of

the synchronization problem for deterministic finite automata (DFA). This problem asks

for a given DFA, whether there exists a word w that maps each state of the automaton

to one state. We call such a word w a synchronizing word. A synchronizing word brings

a system from an unknown configuration into a well defined configuration and thereby

resets the system.

We generalize this problem in four different ways. First, we restrict the set of potential

synchronizing words to a fixed regular language associated with the synchronization

under regular constraint problem. The motivation here is to control the structure of a

synchronizing word so that, for instance, it first brings the system from an operate mode

to a reset mode and then finally again into the operate mode.

The next generalization concerns the order of states in which a synchronizing word

transitions the automaton. Here, a DFA A and a partial order R is given as input

and the question is whether there exists a word that synchronizes A and for which the

induced state order is consistent with R. Thereby, we study different ways for a word to

induce an order on the state set.

Then, we change our focus from DFAs to push-down automata and generalize the syn-

chronization problem to push-down automata and in the following work, to visibly push-

down automata. Here, a synchronizing word still needs to map each state of the au-

tomaton to one state but it further needs to fulfill some constraints on the stack. We

study three different types of stack constraints where after reading the synchronizing

word, the stacks associated to each run in the automaton must be (1) empty, (2) iden-

tical, or (3) can be arbitrary. We observe that the synchronization problem for general

push-down automata is undecidable and study restricted sub-classes of push-down au-

tomata where the problem becomes decidable. For visibly push-down automata we even

obtain efficient algorithms for some settings.

The second part of this work studies the intersection non-emptiness problem for DFAs.

x Abstract

This problem is related to the problem of whether a given DFA A can be synchronized

into a state q as we can see the set of words synchronizing A into q as the intersection of

languages accepted by automata obtained by copying A with different initial states and

q as their final state.

For the intersection non-emptiness problem, we first study the complexity of the, in

general PSPACE-complete, problem restricted to subclasses of DFAs associated with

the two well known Straubing-Thérien and Cohen-Brzozowski dot-depth hierarchies.

Finally, we study the problem whether a given minimal DFA A can be represented as

the intersection of a finite set of smaller DFAs such that the language L(A) accepted by A

is equal to the intersection of the languages accepted by the smaller DFAs. There, we

focus on the subclass of permutation and commutative permutation DFAs and improve

known complexity bounds.

Zusammenfassung

Das Hauptaugenmerk dieser Arbeit liegt auf der Untersuchung der Komplexität von

Verallgemeinerungen des Synchronisationsproblems für deterministische endliche Auto-

maten (DEAs). Dieses Problem fragt für einen gegebenen DEA, ob es ein Wort w gibt,

das jeden beliebigen Zustand des Automaten in einen einzelnen Zustand überführt. Wir

nennen ein solches Wort w ein synchronisierendes Wort. Ein synchronisierendes Wort

bringt ein System aus einer unbekannten Konfiguration in eine wohldefinierte Konfigu-

ration und setzt es damit zurück.

Wir verallgemeinern dieses Problem auf vier verschiedene Arten. Zuerst beschränken wir

die Menge potentiell synchronisierender Wörter auf eine feste reguläre Sprache, die dem

so genannten Synchronisierungsproblem unter regulären Randbedingungen zugeordnet

ist. Die Motivation dabei ist, die Struktur eines synchronisierenden Wortes zu kontrol-

lieren, sodass dieses zum Beispiel das System zunächst aus einem Arbeitsmodus in einen

Resetmodus bringt und nach vollendeter Synchronisierung wieder in den Arbeitsmodus

überführt.

Die nächste Verallgemeinerung betrifft die Reihenfolge der Zustände, in denen ein syn-

chronisierendes Wort den Automaten durchläuft. Hierbei besteht die Eingabe aus einem

DEA A und einer partiellen Ordnung R und die Frage ist, ob ein Wort existiert, das

A synchronisiert und dessen induzierte Zustandsordnung mit der partiellen Ordnung R

übereinstimmt. Dabei untersuchen wir verschiedene Möglichkeiten, wie ein Wort eine

Ordnung auf der Zustandsmenge induzieren kann.

Dann verlagern wir unseren Fokus von DEAs auf Kellerautomaten und verallgemein-

ern das Synchronisationsproblem auf Kellerautomaten, sowie in der vierten Arbeit auf

sichtbare Kellerautomaten. Hierbei muss ein synchronisierendes Wort immer noch alle

Zustände des Automatens auf einen einzelnen Zustand abbilden, aber zusätzlich müssen

noch einige Bedingungen für dem Keller erfüllt sein. Wir untersuchen drei verschiedene

Arten von Keller-Bedingungen, bei denen nach dem Lesen eines synchronisierenden

Wortes, die jedem Lauf im Automaten zugeordneten Keller entweder (1) leer oder (2)

identisch sein müssen, oder (3) beliebig sein dürfen. Wir beobachten, dass das Synchro-

xii Zusammenfassung

nisationsproblem für allgemeine Kellerautomaten unentscheidbar ist und untersuchen

eingeschränkte Unterklassen von Kellerautomaten, bei denen das Problem entscheidbar

wird. Für sichtbare Kellerautomaten erhalten wir für einige Varianten sogar effiziente

Algorithmen.

Der zweite Teil dieser Arbeit untersucht das Schnitt-Leerheitsproblem für DEAs. Dieses

Problem ist verwandt mit dem Problem, ob ein gegebener DEA A in einen bestimmten

Zustand q synchronisiert werden kann, da wir die Menge der Wörter, die A in q syn-

chronisieren, ansehen können als den Schnitt der Sprachen, die von Automaten erkannt

werden, die durch ein Kopieren von A mit unterschiedlichen Anfangszuständen und q

als einzigem Endzustand erzeugt werden.

Bei dem Schnitt-Leerheitsproblem untersuchen wir zunächst die Komplexität des Prob-

lems, welches im Allgemeinen PSPACE-vollständig ist, auf Teilklassen von DEAs, die mit

den beiden bekannten Straubing-Thérien und Cohen-Brzozowski dot-depth Hierarchien

assoziiert sind. Zum Schluss untersuchen wir noch das Problem, ob ein gegebener min-

imaler DEA A dargestellt werden kann als Schnitt kleinerer DEAs, sodass die von A

erkannte Sprache L(A) identisch ist zu dem Schnitt der von den kleineren Automaten

erkannten Sprachen. Hierbei fokussieren wir uns auf die Teilklassen der Permutations

DEAs und kommutativen Permutations DEAs und verbessern die bisher bekannten Kom-

plexitätsschranken für dieses Problem.

List of Publications

In this section, a list of research papers co-authored by myself are presented. The list

is segmented into papers belonging to a common line of research. Items drawn in gray

were published while the author was a master’s student.

Part II is based on the publications 1-6.

Generalizing Synchronization of Finite Automata

1. Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer, Mikhail V.

Volkov, Petra Wolf. Computational Complexity of Synchronization under Regular

Constraints. In MFCS 2019: Leibniz International Proceedings in Informatics

(LIPIcs) 138 (2019) pp. 63:1 – 63:14. DOI: 10.4230/LIPIcs.MFCS.2019.63.

2. Petra Wolf. Synchronization Under Dynamic Constraints. In FSTTCS 2020: Leib-

niz International Proceedings in Informatics (LIPIcs) 182 (2020) pp. 58:1 – 58:14.

DOI: 10.4230/LIPIcs.FSTTCS.2020.58.

Awarded with the annual (2021) best publication award of the Graduate

Center of the University of Trier in the joint category Maths, Computer Science,

Economics, and Social Sciences of Fachbereich IV.

3. Henning Fernau, Petra Wolf, Tomoyuki Yamakami. Synchronizing Deterministic

Push-Down Automata Can Be Really Hard. In MFCS 2020: Leibniz International

Proceedings in Informatics (LIPIcs) 170 (2020) pp. 33:1 – 33:15.

DOI: 10.4230/LIPIcs.MFCS.2020.33.

4. Henning Fernau, Petra Wolf. Synchronization of Deterministic Visibly Push-Down

Automata. In FSTTCS 2020: Leibniz International Proceedings in Informatics

(LIPIcs) 182 (2020) pp. 45:1 – 45:15. DOI: 10.4230/LIPIcs.FSTTCS.2020.45.

https://doi.org/10.4230/LIPIcs.MFCS.2019.63
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.58
https://doi.org/10.4230/LIPIcs.MFCS.2020.33
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.45

xiv List of Publications

Intersection of Finite Automata

5. Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël

Jecker, Mateus de Oliveira Oliveira, Petra Wolf. On the Complexity of Inter-

section Non-emptiness for Star-Free Language Classes. In FSTTCS 2021: Leibniz

International Proceedings in Informatics (LIPIcs) 213 (2021) pp. 34:1 – 34:15.

DOI: 10.4230/LIPIcs.FSTTCS.2021.34

6. Ismaël Jecker, Nicolas Mazzocchi, Petra Wolf. Decomposing Permutation Au-

tomata. In CONCUR 2021: Leibniz International Proceedings in Informatics

(LIPIcs) 203 (2021) pp. 18:1 – 18:19. DOI: 10.4230/LIPIcs.CONCUR.2021.18.

Finding Positive Instances of Computational Problems in Reg-

ular Languages

7. Demen Güler, Andreas Krebs, Klaus-Jörn Lange, Petra Wolf. Deciding Regular

Intersection Emptiness of Complete Problems for PSPACE and the Polynomial

Hierarchy. In LATA 2018: Lecture Notes in Computer Science (LNCS) 10792

(2018) pp. 156 – 168. DOI: 10.1007/978-3-319-77313-1 12.

8. Petra Wolf. On the Decidability of Finding a Positive ILP-Instance in a Regular

Set of ILP-Instances. In DCFS 2019: Lecture Notes in Computer Science (LNCS)

11612 (2019) pp. 272 – 284. DOI: 10.1007/978-3-030-23247-4 21.

Submitted for journal publication.

9. Petra Wolf. From Decidability to Undecidability by Considering Regular Sets of

Instances. In Theoretical Computer Science 899 (2022) pp. 25 – 38.

DOI: 10.1016/j.tcs.2021.11.006.

10. Volker Diekert, Henning Fernau, Petra Wolf. Properties of Graphs Specified by

a Regular Language. In DLT 2021: Lecture Notes in Computer Science (LNCS)

12811 (2021) pp. 117 – 129. DOI: 10.1007/978-3-030-81508-0 10.

Submitted for journal publication.

Parameterized Complexity of Ordering Related Problems and

Diversity of Solutions

11. Emmanuel Arrighi, Henning Fernau, Mateus de Oliveira Oliveira, Petra Wolf.

Width Notions for Ordering-Related Problems. In FSTTCS 2020: Leibniz In-

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34
https://doi.org/10.4230/LIPIcs.CONCUR.2021.18
https://doi.org/10.1007/978-3-319-77313-1_12
https://doi.org/10.1007/978-3-030-23247-4_21
https://doi.org/10.1016/j.tcs.2021.11.006
https://doi.org/10.1007/978-3-030-81508-0_10

xv

ternational Proceedings in Informatics (LIPIcs) 182 (2020) pp. 9:1 – 9:18.

DOI: 10.4230/LIPIcs.FSTTCS.2020.9.

12. Emmanuel Arrighi, Henning Fernau, Mateus de Oliveira Oliveira, Petra Wolf. Or-

der Reconfiguration Under Width Constraints. In MFCS 2021: Leibniz Interna-

tional Proceedings in Informatics (LIPIcs) 202 (2021) pp. 8:1 – 8:15.

DOI: 10.4230/LIPIcs.MFCS.2021.8.

13. Emmanuel Arrighi, Henning Fernau, Daniel Lokshtanov, Mateus de Oliveira

Oliveira, Petra Wolf. Diversity in Kemeny Rank Aggregation: A Parameterized

Approach. In IJCAI 2021: Proceedings of the Thirtieth International Joint Con-

ference on Artificial Intelligence (2021) Main Track pp. 10 – 16.

DOI: 10.24963/ijcai.2021/2.

14. Synchronization and Diversity of Solutions. Emmanuel Arrighi, Henning Fernau,

Mateus de Oliveira Oliveira, Petra Wolf. Submitted manuscript (2021).

Games Played on Graphs

15. Ronald de Haan, Petra Wolf. Restricted Power - Computational Complexity Re-

sults for Strategic Defense Games. In FUN 2018: Leibniz International Proceedings

in Informatics (LIPIcs) 100 (2018) pp. 17:1 – 17:14.

DOI: 10.4230/LIPIcs.FUN.2018.17.

16. Nils Morawietz, Petra Wolf. A Timecop’s Chase Around the Table. In MFCS

2021: Leibniz International Proceedings in Informatics (LIPIcs) 202 (2021) pp.

77:1 – 77:18. DOI: 10.4230/LIPIcs.MFCS.2021.77

Data Compression

17. Sven Fiergolla, Petra Wolf. Improving Run Length Encoding by Preprocessing.

In DCC 2021: Institute of Electrical and Electronics Engineers (IEEE) (2021)

pp. 341. DOI: 10.1109/DCC50243.2021.00051.

Learning Finite Automata from Samples

18. Learning from Positive and Negative Examples: Dichotomies and Parameterized

Algorithms. Jonas Lingg, Mateus de Oliveira Oliveira, Petra Wolf.

Submitted manuscript (2021).

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.9
https://doi.org/10.4230/LIPIcs.MFCS.2021.8
https://doi.org/10.24963/ijcai.2021/2
https://doi.org/10.4230/LIPIcs.FUN.2018.17
https://doi.org/10.4230/LIPIcs.MFCS.2021.77
https://doi.org/10.1109/DCC50243.2021.00051

xvi List of Publications

All papers reprinted in this work are published in the LIPICS format and protected by

the Creative Commons Attribute 3.0 Unported license (CC-BY 3.0).

The authors retain all rights.

Contents

Scientific Environment iii

Academic CV of the Author v

Acknowledgments vii

Abstract ix

Zusammenfassung xi

List of Publications xiii

I Background 1

1 Introduction 3

2 Formal Language Theory 19

2.1 Regular Languages . 19

2.1.1 Models of Representation . 19

2.1.2 Subclasses of Regular Languages 24

2.2 Context-Free Languages . 28

2.2.1 (Non-Deterministic) Context-Free Languages 28

xviii CONTENTS

2.2.2 Deterministic Context-Free Languages 29

2.2.3 Counter Automata . 30

2.2.4 Finite-Turn Push-Down Automata 32

2.2.5 Visibly Push-Down Languages . 33

3 Computational Complexity 37

3.1 Classical Time and Space Classes . 37

3.2 Parameterized Complexity . 41

4 Overview of Scientific Results in Part II 45

5 Directions for Future Research 59

6 Appendix of Part I 79

II Publications 83

7 Synchronization under Regular Constraints 85

8 Synchronization under Dynamic Constraints 119

9 Synchronizing Deterministic Push-Down Automata 151

10 Synchronization of Deterministic Visibly Push-Down Automata 177

11 Intersection Non-emptiness for Star-Free Language Classes 203

12 Decomposing Permutation Automata 239

Part I

Background

Chapter 1

Introduction

Synchronization is an important concept for many applied areas: parallel and distributed

programming, system and protocol testing, information coding, robotics, etc. At least

some aspects of synchronization are captured by the notion of a synchronizing automa-

ton; for instance, synchronizing automata adequately model situations in which one has

to direct a certain system to a particular state without a priori knowledge of its current

state. We only refer to some survey papers [Sandberg, 2005, Volkov, 2008], as well as to

Chapter 13 in [Kohavi and Jha, 2009], that also report on some of these applications.

We will name in this introduction several automata models and complexity classes that

are only formally defined in the next two chapters. We recommend the reader to jump

to the Chapter 2 for definitions of automaton models and to Chapter 3 for definitions of

complexity classes, if necessary.

An automaton is called synchronizing if there exists a word that brings it to a known

state independently of the starting state. This concept is quite natural and has been

investigated intensively in the last six decades. It is related to the arguably most fa-

mous open combinatorial question in automata theory, formulated by Černý and Starke

in [Černý, 1964, Starke, 1966]. The Černý conjecture states that every n-state synchro-

nizing automaton can be synchronized by a word of length smaller or equal (n − 1)2.

Although this bound was proven for several classes of finite-state automata, the gen-

eral case is still widely open. The currently best upper bound on this length is cubic,

and only very little progress has been made, basically improving on the multiplicative

constant factor in front of the cubic term, see [Shitov, 2019, Szyku la, 2018].

Due to the importance of this notion of synchronizing words, quite a large number of

generalizations and modifications have been considered in the literature. We only men-

tion four of these in the following. Instead of synchronizing the whole set of states, one

4 Introduction

could be interested in synchronizing only a subset of states. This and related questions

were first considered by Rystsov in [Rystsov, 1983]. Instead of considering determinis-

tic finite automata (DFAs), one could alternatively study the notion of synchronizability

for nondeterministic finite automata [Gazdag et al., 2009, Martyugin, 2014]. The notion

of synchronizability naturally transfers to partially defined transition functions where

a synchronizing automata avoiding undefined transitions is called carefully synchroniz-

ing, see [de Bondt et al., 2019, Martyugin, 2009, Martyugin, 2014]. To capture more

adaptive variants of synchronizing words, synchronizing strategies have been introduced

in [Larsen et al., 2014]. Recall that the question of synchronizability (without length

bounds) is solvable in polynomial time for complete DFAs [Starke, 1966, Volkov, 2008].

However, in all of the mentioned generalizations, this synchronizability question becomes

even PSPACE-complete. This general tendency can also be observed in the generalization

that we introduce in this thesis.

The classical synchronization problem asks, for a given deterministic finite automa-

ton (DFA), if there exists a synchronizing word, i.e., an input that brings all states

of the automaton to a single state. The idea of bringing an automaton to a well-defined

state by reading a word, starting from any state, can be seen as implementing a software

reset. This is why a synchronizing word is also sometimes called a reset word. Restrict-

ing the length of a potential synchronizing word of some DFA by an integer parameter

in the input also yields a harder problem, namely the NP-complete short synchronizing

word problem [Rystsov, 1980, Eppstein, 1990]. In the following, we will introduce sev-

eral generalizations of the synchronization problems and its mentioned variants. Our

main objective thereby is the study of the computational complexity of the introduced

problems. Thereby, we are not only obtaining classical complexity results but also pa-

rameterized complexity results concerning parameterized versions of the problem. A

first study of the parameterized complexity of the short synchronizing word problem was

performed by Fernau et al. in [Fernau et al., 2015] which entailed a series of research pa-

pers on the parameterized complexity of synchronization problems [Vorel and Roman,

2015, Fernau, 2019, Bruchertseifer and Fernau, 2020, Bruchertseifer and Fernau, 2021].

Regular Constraints

In the theory of synchronizing automata, one normally allows the reset word to be an

arbitrary word over the input language of the corresponding automaton. In reality,

however, available instructions might be subject to certain restrictions; for instance,

it is quite natural to assume that a directing instruction should always start and end

with a specific command that first switches the automaton to a ‘directive’ mode and

then returns the automaton to its usual mode. In its simplest form, the switching

5

between ‘normal mode’ and ‘directive’ (synchronization) mode can be modeled as ab∗a.

These constraints are defined by some (fixed) finite automaton (called the constrained

automaton) describing a regular language R, and the question is, given some DFA A,

if A has some synchronizing word from R. This notion explicitly appeared in [Gusev,

2012] as an auxiliary tool.

Constraints of this form, i.e., which can be modeled by a fixed regular language on

the side, restricting the set of potential synchronizing words for an input automaton

are called regular constraints and the topic of the first research paper in Chapter 7 of

Part II. There, a complete analysis of the complexity of the synchronization problem

under regular constraints for constraint partial automata with two states and at most

three letters is performed. Building up on this work, a line of research restricting the class

of regular languages from which the constraint language is chosen was pursued by Stefan

Hoffmann, e.g., in [Hoffmann, 2020a, Hoffmann, 2021a, Hoffmann, 2021b, Hoffmann,

2020b, Hoffmann, 2020c].

Dynamic Constraints

Apart from software reset words, one of the oldest applications of the intensively stud-

ied topic of synchronizing automata is the problem of designing parts orienters, which

are robots or machines that get an object in an (due to a lack of expensive sensors) un-

known orientation and transform it into a defined orientation [Ananichev and Volkov,

2004]. In his pioneering work, Natarajan [Natarajan, 1986] modeled the parts orienters

as deterministic complete automata (see Figure 1.1) where a state corresponds to a pos-

sible orientation of a part and a transition of some letter a from state q corresponds

to applying the modifier corresponding to a to a part in orientation q. He proved that

the synchronization problem is solvable in polynomial time for – what is later called –

the class of orientable automata [Ryzhikov, 2019] if the cyclic order respected by the

automaton is part of the input.

Many different classes of automata have since been studied regarding their synchroniza-

tion behavior. We refer to [Volkov, 2008, Béal and Perrin, 2016, Truthe and Volkov,

2019] for an overview. The original motivation of designing a parts orienter was revis-

ited in [Türker and Yenigün, 2015] where Türker and Yenigün modeled the design of an

assembly line, which again brings a part from an unknown orientation into a known ori-

entation, where different modifiers have different costs. For example, a robot arm is much

more expensive than a simple obstacle wall. Therefor, they enhance the alphabet with a

cost function and ask whether the alphabet of the automaton can be narrowed such that

the cost of the alphabet is below a given threshold and the automaton is still synchro-

6 Introduction

Figure 1.1: Illustration of parts orienters as jumps on an assembly line in the introductory
work of Natarajan [Natarajan, 1986]. Here, a state corresponds to a possible orientation
of a part and a transition of some letter a from state q corresponds to applying the
modifier corresponding to a to a part in orientation q.

nizable. They showed that this problem is NP-complete for DFAs and PSPACE-complete

for partial DFAs with respect to careful synchronization.

What has not been considered so far is that different modifiers can have different impact

on the parts and as we do not know the current orientation we might want to restrict

the chronology of applied modifiers. For example, if the part is a box with a fold-out

lid, turning it upside-down will cause the lid to open. In order to close the lid one might

need another modifier such as a low bar which brushes the lid and closes it again, as

illustrated in Figure 1.2. To specify that a parts orienter should deliver the box facing

upward with a closed lid one needs to encode something like: “When the box is in the

state facing down, it later needs to be in the state lid closed”. But this does not stop

us from opening the lid again, so we need to be more precise and encode: “After the

last time the box was in the state facing down, it needs to visit the state lid closed at

least once”.

Conditions of this type form positive constraints for the future as they demand for the

future visit of some state. But also the opposite situation of forbidding the future visit

of a state is quite natural as our next example shows. Let us again picture the box with

7

Figure 1.2: Illustration of a box with lids that open when the box is rotated together
with a modifier closing the lids.

the lid in mind, but this time the box initially contains some water. We would like to

have the box in a specific orientation with the lid open but the water should not be

shed during orientating. We have a modifier that opens the lid and a modifier which

rotates the box. Clearly we do not want the box to face downwards after the lid has

been opened. So, we encode: “As soon as the state lid open has been reached, the state

facing downwards should never be entered again”.

Modeling conditions of the above discussed form that restrict the dynamic behavior of

a synchronizing word are the focus of the second research paper presented in Chapter 8

of Part II1. There, we implement those conditions in our model of a parts orienter by

enhancing a given DFA with a relation R. We will then consider different ways of how

a synchronizing word implies an order on the states and ask whether there exists a

synchronizing word whose implied state order agrees with the input relation R.

Push-Down Automata

The idea of bringing an automaton to a well-defined state by reading a word, starting

from any state is obviously not restricted to finite automata. For the next two research

papers in Chapter 9 and 10 of Part II we move away from deterministic finite automata

to more general deterministic push-down automata.

What should a synchronizing word mean in this context? Mikami and Yamakami first

studied in [Mikami and Yamakami, 2020] three different models, depending on require-

ments of the stack contents when a word w drives the automaton into a synchronizing

state, irrespectively of the state where processing w started: we could require at the end

(a) that the stack is always empty; or (b) that the stack contents is always the same

(but not necessarily empty); or (c) that the stack contents is completely irrelevant upon

1This research paper was awarded with the 2021 publication prize of the Graduate Center of the
University of Trier, Faculty IV. A video (in German) of the presentation of the results to the public
during the award can be found under https://youtu.be/kmDPUmUt-R4.

https://youtu.be/kmDPUmUt-R4

8 Introduction

entering the synchronizing state. For those three models of synchronizing push-down

automata, they demonstrated in [Mikami and Yamakami, 2020] some upper and lower

bounds on the maximum length of the shortest synchronizing word dependent on the

stack height. Here, we study these three models from a complexity-theoretic perspective.

However, as it is shown in Chapter 9, synchronizability becomes undecidable when ask-

ing about synchronizability in any of the stack models. Clearly, by restricting the length

of a potential synchronizing word of some push-down automaton by an integer param-

eter (given in unary), we can observe that the corresponding synchronization problems

all become NP-complete, as the hardness is trivially inherited from what is known about

DFA synchronizability. Therefore, those length-bounded problem variants are not fur-

ther considered here. Yet, it remains interesting to observe that with DFAs, introducing

a length bound on the synchronizing word means an increase of complexity, while for de-

terministic push-down automata, this introduction means dropping from undecidability

close to feasibility.

Beside general deterministic push-down automata, these stack model variants of syn-

chronization are studied for subclasses of deterministic push-down automata such as

deterministic counter automata, deterministic (partially) blind counter automata and

finite-turn variants of thereof.

The DFA synchronization problem has been generalized in the literature to other au-

tomata models including infinite-state systems with infinite branching such as weighted

and timed automata [Doyen et al., 2014, Shirmohammadi, 2014] or register automata

[Babari et al., 2016]. For instance, register automata are infinite state systems where a

state consists of a control state and register contents. A synchronizing word for a reg-

ister automaton brings all (infinitely many) states to the same state (and same register

content). The synchronization problem for deterministic register automata (DRA) is

PSPACE-complete and NLOG-complete for DRAs with only one register.

Finally, we want to mention that the term synchronization of push-down automata has

already some occurrences in the literature, i.e., in [Caucal, 2006, Arenas et al., 2011],

but here the term synchronization refers to some relation of the input symbols to the

stack behavior [Caucal, 2006] or to reading different words in parallel [Arenas et al.,

2011] and is not to be confused with our notion of synchronizing states.

Building up on our introductory work, the concept of synchronizing push-down automata

has recently been generalized to adaptive synchronization of push-down automata [Bala-

subramanian and Thejaswini, 2021]. There, the current state of the system is not known

but there is an observer who can give inputs to the machine and observe the implied

modification of the stack. Then, the question is whether the system can be brought from

9

any state to a predetermined state by giving inputs in an adaptive manner, i.e., the next

input letter may depend on the reaction of the system to the previous input. Balasubra-

manian and Thejaswini also considered a subset variant of the adaptive synchronization

problem where the question is whether a subset of states can be adaptively synchronized.

They further distinguished between deterministic and non-deterministic push-down au-

tomata and showed that the adaptive synchronization and subset synchronization prob-

lem are 2-EXPTIME-complete in the non-deterministic setting and EXPTIME-complete

in the deterministic setting.

Visibly Push-Down Automata

Another automaton model, where the state set is enhanced with a possibly infinite mem-

ory structure, is the class of nested word automata (NWAs were introduced in [Alur and

Madhusudan, 2009]), where an input word is enhanced with a matching relation deter-

mining at which pair of positions in a word a symbol is pushed to and popped from

the stack. The class of languages accepted by NWAs is identical to the class of visibly

push-down languages (VPL) accepted by visibly push-down automata (VPDA) and form

a proper subclass of the deterministic context-free languages. VPDAs have first been

studied by Mehlhorn [Mehlhorn, 1980] under the name input-driven pushdown automata

and became quite popular more recently due to the work by Alur and Madhusudan [Alur

and Madhusudan, 2004], showing that VPLs share several nice properties with regular

languages. For more on VPLs we refer to the survey [Okhotin and Salomaa, 2014].

In [Chistikov et al., 2019], the synchronization problem for NWAs was studied. There,

the concept of synchronization was generalized to bringing all states to one single state

such that for all runs the stack is empty (or in its start configuration) after reading the

synchronizing word. In this setting, the synchronization problem is solvable in polyno-

mial time (again indicating similarities of VPLs with regular languages), while the short

synchronizing word problem (with length bound given in binary) is PSPACE-complete;

the question of synchronizing from or into a subset is EXPTIME-complete. Also, match-

ing exponential upper bounds on the length of a synchronizing word are given.

In the research paper presented in Chapter 10 we study the synchronization problem

for real-time (no ε-transitions) deterministic visibly push-down automata (DVPDA) and

several subclasses thereof, like real-time deterministic very visibly push-down automata

(DVVPDA for short; this model was introduced in [Ludwig, 2019]), real-time deter-

ministic visibly counter automata (DVCA for short; this model appeared among oth-

ers in [Bárány et al., 2006, Srba, 2009, Bollig, 2016, Hahn et al., 2015, Krebs et al.,

2015a, Krebs et al., 2015b]) and finite turn variants thereof. We want to point out that,

despite the equivalence of the accepted language class, the automata models of nested

10 Introduction

word automata and visibly push-down automata still differ and the results from [Chis-

tikov et al., 2019] do not immediately transfer to VPDAs, as for NWAs an input word

is equipped with a matching relation, which VPDAs lack of. In general, the complexity

of the synchronization problem can differ for different automata models accepting the

same language class. For instance, in contrast to the polynomial-time solvable synchro-

nization problem for DFAs, the generalized synchronization problem for finite automata

with one ambiguous transition is PSPACE-complete, as well as the problem of carefully

synchronizing a DFA with one undefined transition [Martyugin, 2012].

We will not only consider the synchronization model introduced in [Chistikov et al.,

2019], where reading a synchronizing word results in an empty stack on all runs; but

we will also consider a synchronization model where not only the final state on every

run must be the same but also the stack contents need to be identical, as well as a

model where only the states needs to be synchronized and the stack contents might be

arbitrary. These three models of synchronization have been introduced in [Mikami and

Yamakami, 2020], where length bounds on a synchronizing word for general DPDAs have

been studied dependent on the stack height. The complexity of these three concepts of

synchronization for general DPDAs are considered in [Fernau et al., 2020] (Chapter 9),

where it is shown that synchronizability is undecidable for general DPDAs and deter-

ministic counter automata (DCA). It becomes decidable for deterministic partially blind

counter automata and is PSPACE-complete for some types of finite turn DPDAs, while

it is still undecidable for other types of finite turn DPDAs.

In contrast, for DVPDAs and considered subclasses hereof, the synchronization problem

for all three stack models, with restricted or unrestricted number of turns, is in EXP-

TIME and hence decidable. For DVVPDAs and DVCAs, the synchronization problems

for all three stack models (with unbounded number of turns) are even in P. Like the

synchronization problem for NWAs in the empty stack model considered in [Chistikov

et al., 2019], we observe that the synchronization problem for DVPDAs in the empty

stack model is solvable in polynomial time, whereas synchronization of DVPDAs in the

same and arbitrary stack models is at least PSPACE-hard. If the number of turns caused

by a synchronizing word on each run is restricted, the synchronization problem becomes

PSPACE-hard for all considered automata models for n > 0 and is only in P for n = 0 in

the empty stack model. We will further introduce variants of synchronization problems

distinguishing the same and arbitrary stack models by showing complementary complex-

ities in these models. For problems considered in [Fernau et al., 2020], these two stack

models have always shared their complexity status.

11

Connection between Synchronizing Automata and Intersection of Automata

The Intersection Non-emptiness problem for finite automata is one of the most

fundamental and well studied problems in the interplay between algorithms, complex-

ity theory, and automata theory, see [Kozen, 1977, Kasai and Iwata, 1985, Lange and

Rossmanith, 1992, Wareham, 2000, Karakostas et al., 2003, Wehar, 2014, Fernau and

Krebs, 2017, Wehar, 2017]. Given a list A1, A2, . . . , An of finite automata over a com-

mon alphabet Σ, the goal is to determine whether there is a string w ∈ Σ∗ that is

accepted by each of the automata in the list. Or in other words, the question is whether

L(A1) ∩ L(A2) ∩ · · · ∩ L(An) 6= ∅.

For unbounded alphabets, the Intersection Non-emptiness problem is PSPACE-

complete by a reduction from the general word problem of deterministic polynomial-

space bounded Turing machines by Kozen [Kozen, 1977]. The problem remains PSPACE-

complete for binary alphabets as we observe in Chapter 11 by re-analyzing a result in

[Krötzsch et al., 2017, Theorem 3] showing that the closely related Non-universality

problem for NFAs is PSPACE-complete for binary alphabets. For unary input alphabets,

the Intersection Non-emptiness problem becomes NP-complete (a result implicitly

contained already in [Stockmeyer and Meyer, 1973]). The problem is also NP-complete

when the input automata all accept finite languages [Rampersad and Shallit, 2010].

The Intersection Non-emptiness problem is closely related to synchronizing au-

tomata. On one hand, the question whether an automaton A on n states can be syn-

chronized into some state q can be modeled as the intersection non-emptiness problem of

n automata, where each automaton is a copy of A with q as its single final state and some

different start state each. Then, the intersection of those n automata accept exactly those

words that synchronize A into the state set {q}. On the other hand, the Intersection

Non-emptiness problem for DFAs can be reduced to the Careful Synchronization

problem which asks, given a partial DFA A, does there exists a word w that synchro-

nizes A without taking any undefined transition while reading w on any path starting

from any state of A. Martyugin showed in [Martyugin, 2014] that the Careful Syn-

chronization problem is PSPACE-complete even if the input automaton has only one

undefined transition by a reduction from the Intersection Non-emptiness problem.

Due to this natural relation, the remaining two research papers in Chapter 11 and 12

are concerned with the Intersection Non-emptiness problem.

For a fixed number of input DFAs, the Intersection Non-emptiness problem is solv-

able in polynomial time, i.e., in time O(nk) where n is the size of the biggest automaton

and k is the fixed number of automata [Rabin and Scott, 1959].

12 Introduction

Recently, it was shown in [de Oliveira Oliveira and Wehar, 2020] that solving Inter-

section Non-emptiness for a fixed number of k DFAs in time slightly faster than

O(nk) would imply the existence of deterministic sub-exponential time algorithms for

the simulation of nondeterministic linear space bounded computations strengthening

the existing conditional lower bounds for Intersection Non-emptiness [Kasai and

Iwata, 1985, Fernau and Krebs, 2017, Karakostas et al., 2003, Wehar, 2014, Wehar, 2017].

Fine grained complexity results drawing a connection between the Intersection Non-

emptiness problem for two and three DFA’s over a binary alphabet and the problems

Triangle Finding and 3Sum were obtained in [de Oliveira Oliveira and Wehar, 2020].

Further results on the parameterized complexity of the Intersection Non-emptiness

problem can be found in [Kasai and Iwata, 1985, Lange and Rossmanith, 1992, Ware-

ham, 2000]. Combining a finite list of k automata with one push-down automaton gives

even finer results on the running time O(nk). Namely it was shown in [Swernofsky and

Wehar, 2015] that the complexity class P can be characterized in this way. More pre-

cisely, Swernofsky and Wehar showed that there exist constants c1 and c2 such that for

every k, intersection non-emptiness for one PDA and k DFA’s is solvable in time O(nc1k),

but is not solvable in time O(nc2k). If we drop the push-down automaton in the inter-

section, then the complexity class NLOG can be characterized via the Intersection

Non-emptiness problem for deterministic finite automata over a binary alphabet [We-

har, 2014].

Intersection Non-Emptiness of Star-Free Languages

In Chapter 11, we analyze the complexity of the Intersection Non-emptiness prob-

lem under the assumption that the languages accepted by the input automata belong

to a given level of the Straubing-Thérien hierarchy [Place and Zeitoun, 2019, Straub-

ing, 1981, Straubing, 1985, Thérien, 1981] or to some level of the Cohen-Brzozowski

dot-depth hierarchy [Brzozowski, 1976, Cohen and Brzozowski, 1971, Place and Zeitoun,

2019]. Somehow, these languages are severely restricted, in the sense that both hier-

archies, which are infinite, are entirely contained in the class of star-free languages, a

class of languages that can be represented by expressions that use union, concatena-

tion, and complementation, but no Kleene star operation [Brzozowski, 1976, Brzozowski

and Knast, 1978, Place and Zeitoun, 2019]. Yet, languages belonging to fixed levels

of either hierarchy may already be very difficult to characterize, in the sense that the

very problem of deciding whether the language accepted by a given finite automaton

belongs to a given full level or half-level k of either hierarchy is open, except for a few

values of k [Almeida and Kĺıma, 2010, Glaßer and Schmitz, 2001, Glaßer and Schmitz,

2000, Place and Zeitoun, 2019]. It is worth noting that while the problem of determining

13

whether a given automaton accepts a language in a certain level of either the dot-depth

or of the Straubing-Thérien hierarchy is computationally hard (at least PSPACE-hard for

non-deterministic finite automata [III and Rosenkrantz, 1978]), automata accepting lan-

guages in lower levels of these hierarchies arise naturally in a variety of applications such

as model checking where the Intersection Non-emptiness problem is of fundamental

relevance [Abdulla, 2012, Bouajjani et al., 2000, Bouajjani et al., 2007].

An interesting question to consider is how the complexity of the Intersection Non-

emptiness problem changes as we move up in the levels of the Straubing-Thérien hierar-

chy or in the levels of the dot-depth hierarchy. In particular, does the complexity of this

problem changes gradually, as we increase the complexity of the input languages? In the

work presented in Chapter 11, we show that this is actually not the case, and that the

complexity landscape for the Intersection Non-emptiness problem is already deter-

mined by the very first levels of either hierarchy. The first main result states that the

Intersection Non-emptiness problem for NFAs and DFAs accepting languages from

the level 1/2 of the Straubing-Thérien hierarchy are NLOG-complete and LOG-complete,

respectively, under AC0 reductions. Additionally, this completeness result holds even in

the case of unary languages. To prove hardness for NLOG and LOG, respectively, we will

use a simple reduction from the reachability problem for DAGs and for directed trees,

respectively. Nevertheless, the proof of containment in NLOG and in LOG, respectively,

will require a new insight that may be of independent interest. More precisely, we will

use a characterization of languages in the level 1/2 of the Straubing-Thérien hierarchy

as shuffle ideals to show that the Intersection Non-emptiness problem can be re-

duced to Concatenation Non-Emptiness. This allows us to decide Intersection

Non-emptiness by analyzing each finite automaton given at the input individually. It

is worth mentioning that this result is optimal in the sense that the problem becomes

NP-hard even if we allow a single DFA to accept a language from L1, and require all the

others to accept languages from L1/2.

Subsequently, we analyze the complexity of Intersection Non-emptiness when all

input automata are assumed to accept languages from one of the levels of B0 or B1/2 of

the dot-depth hierarchy, or from the levels L1 or L3/2 of the Straubing-Thérien hierar-

chy. It is worth noting that NP-hardness follows straightforwardly from the fact that

Intersection Non-emptiness for DFAs accepting finite languages is already NP-

hard [Rampersad and Shallit, 2010]. Containment in NP, on the other hand, is a more

delicate issue, and here the representation of the input automaton plays an important

role. A characterization of languages in L3/2 in terms of languages accepted by partially

ordered NFAs [Schwentick et al., 2001] is crucial for us, combined with the fact that In-

tersection Non-emptiness when the input is given by such automata is NP-complete

[Masopust and Thomazo, 2015]. Intuitively, the proof in [Masopust and Thomazo, 2015]

14 Introduction

follows by showing that the minimum length of a word in the intersection of languages

in the level 3/2 of the Straubing-Thérien hierarchy is bounded by a polynomial on the

sizes of the minimum partially ordered NFAs accepting these languages. To prove that

Intersection Non-emptiness is in NP when the input automata are given as DFAs,

we prove a new result establishing that the number of Myhill-Nerode equivalence classes

in a language in the level L3/2 is at least as large as the number of states in a minimum

partially ordered automaton representing the same language.

Interestingly, we show that the proof technique used to prove this last result does not

generalize to the context of NFAs. To prove this, we carefully design a sequence (Ln)n∈N≥1

of languages over a binary alphabet such that for every n ∈ N≥1, the language Ln can

be accepted by an NFA of size n, but any partially ordered NFA accepting Ln has

size 2Ω(
√
n). This lower bound is ensured by the fact that the syntactic monoid of Ln has

many J -factors. Our construction is inspired by a technique introduced by Klein and

Zimmermann, in a completely different context, to prove lower bounds on the amount of

look-ahead necessary to win infinite games with delay [Klein and Zimmermann, 2016].

To the best of our knowledge, this is the first exponential separation between the state

complexity of general NFAs and that of partially ordered NFAs. While this result does

not exclude the possibility that Intersection Non-emptiness for languages in L3/2

represented by general NFAs is in NP, it gives some indication that proving such a

containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is

already PSPACE-complete if all accepting languages are from the level B1 of the dot-depth

hierarchy or from the level L2 of the Straubing-Thérien hierarchy. We can adapt Kozen’s

classical PSPACE-completeness proof by using the complement of languages introduced

in [Masopust and Krötzsch, 2021] in the study of partially ordered automata. Since the

languages in [Masopust and Krötzsch, 2021] belong to L3/2, their complement belong

to L2 (and to B1), and therefore, the proof follows.

Decomposing Automata

Not only can we represent the synchronization problem as a intersection non-emptiness

problem of DFAs, but we can also represent some minimal DFAs themselves as the

intersection of finitely many smaller DFAs. In this sense, we decompose the bigger

automaton into a set of smaller automata, such that their intersection accepts the same

language as the original automaton. If we consider only minimal DFAs, whether or not

such a decomposition is possible is a property determined by the accepted language.

15

Compositionality is a fundamental notion in numerous fields of computer science

[de Roever et al., 1998]. This principle can be summarized as follows: Every system

should be designed by composing simple parts such that the meaning of the system can

be deduced from the meaning of its parts, and how they are combined. For instance, this

is a crucial aspect of modern software engineering: a program split into simple modules

will be quicker to compile and easier to maintain. The use of compositionality is also es-

sential in theoretical computer science: it is used to avoid the state explosion issues that

usually happen when combining parallel processes together, and also to overcome the

scalability issues of problems with a high theoretical complexity. In the work presented

in Chapter 12, we study compositionality in the setting of formal languages: we show

how to make languages simpler by decomposing them into intersections of bigger lan-

guages accepted by smaller automata. This is motivated by model-checking problems.

For instance, the LTL model-checking problem asks, given a linear temporal logic for-

mula ϕ and a finite state machine M , whether every execution of M satisfies ϕ. This

problem is decidable, but has a high theoretical complexity (PSPACE) with respect to

the size of ϕ [Baier and Katoen, 2008]. If ϕ is too long, it cannot be checked efficiently.

This is where compositionality comes into play: if we can decompose the specification

language into an intersection of simple languages, that is, decompose ϕ into a conjunc-

tion ϕ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk of small specifications, it is sufficient to check whether all

the ϕi are satisfied separately.

In the work in Chapter 12, we focus our study on permutation DFAs, which are DFAs

whose transition monoids are groups: each letter induces a one-to-one map from the state

set into itself. These DFAs are also called reversible DFAs [Kunc and Okhotin, 2013, Pin,

1992]. Reversibility is stronger than determinism: this powerful property allows to

deterministically navigate back and forth between the steps of a computation. This

is particularly relevant in the study of the physics of computation, since irreversibility

causes energy dissipation [Landauer, 1961]. Remark that in the setting of DFAs, this

power results in a loss of expressiveness: contrary to more powerful models (for instance

Turing machines), reversible DFAs are less expressive than general DFAs.

The problem of interest for this work is the so called Decomp problem, that asks for

a given DFA A whether it is composite, i.e., whether there exists a finite set of DFAs

{A1, A2, . . . , An} such that L(A) = L(A1) ∩ L(A2) ∩ · · · ∩ L(An) and each of the au-

tomata in the intersection has strictly less states than A. The DFA Decomp problem

was first introduced by Kupferman and Moscheiff [Kupferman and Mosheiff, 2015]. They

proved that it is decidable in EXPSPACE, but left open the exact complexity: the best

known lower bound is hardness for NLOG. They gave more efficient algorithms for re-

stricted domains: a PSPACE algorithm for permutation DFAs, and a polynomial-time

algorithm for normal permutation DFAs, a class of DFAs that contains all commutative

16 Introduction

permutation DFAs. Recently, the Decomp problem was proved to be decidable in log-

arithmic space for DFAs with a singleton alphabet [Jecker et al., 2020]. The trade-off

between number and size of factors was studied in [Netser, 2018], where automata show-

ing extreme behavior are presented, i.e., DFAs that can either be decomposed into a

large number of small factors, or a small number of large factors.

In the research paper presented in Chapter 12, we expand the domain of instances over

which the Decomp problem is tractable. There, we focus on permutation DFAs and

propose new techniques that improve the known complexities.

Structure of this Work

This work is structured as followed. In Chapter 2 we formally introduce language and

automata classes discussed in this thesis. We begin with the class of regular languages

and introduce several equivalent models recognizing or describing regular languages.

Then, we introduce subclasses of regular languages such as star-free languages and two

infinite hierarchies within the class of star-free languages, namely the Straubing-Thérien

hierarchy and Cohen-Brzozowski dot-depth hierarchy. Next, we focus on the bigger class

of context-free languages containing the regular languages as a strict subclass. Here,

again we consider several language classes between regular and context-free such as

deterministic context-free languages or visibly push-down languages.

In Chapter 3 we then switch from formal language classes to complexity classes. After

introducing the necessary machine models to define the considered complexity classes,

we define several classical complexity classes. The second part of this chapter is then

concerned with the quite modern concept of parameterized complexity theory where we

define the parameterized complexity classes appearing in this thesis.

Now, we are ready to state in Chapter 4 the exact results of each research paper presented

in Part II. Therefore, we give the definition of the introduced and considered problems

for each paper and state in a compact way the obtained results of the paper as well as

the potentially remaining open problems in this direction.

Finally, we discuss new potential directions of future research for the topics introduced

in this thesis in Chapter 5. These contain among other a recently discovered new pa-

rameterized complexity classes based on a parameterized synchronization problem as a

defining complete problem, as well as ideas on how to generalize the concept of synchro-

nizing automata to quantum finite automata. Both directions are new, promising and

fast growing fields of recent research in the theory of formal languages and complex-

ity theory.

17

Part II consists of the six research papers introduced above. Each one is a slight modifi-

cation of the published work in the sense that missing proofs are reintegrated. Usually,

technical proofs, further examples, and algorithms given in pseudo code are removed

from page limited conference papers after the review progress and before publication.

Those parts are reintegrated in the versions of published papers presented in Part II.

18 Introduction

Chapter 2

Formal Language Theory

2.1 Regular Languages

We refer to the empty word as ε. For a finite alphabet Σ we denote with Σ∗ the set of

all words over Σ and with Σ+ = ΣΣ∗ the set of all non-empty words. Let N = {0, 1, . . . }
be the set of natural numbers. For i ∈ N we set [i] = {1, 2, . . . , i} with the special case

[0] = ∅. For a set S, we denote with |S| the cardinality of S. For w ∈ Σ∗ we denote

with |w| the length of w, with w[i] for i ∈ [|w|] the i’th symbol of w, and with w[i..j]

for i, j ∈ [|w|] the factor w[i]w[i+ 1] . . . w[j] of w. We call w[1..i] a prefix and w[i..|w|] a

suffix of w. We make the convention w[0] = ε. The reversal of w is denoted by wR, i.e.,

for |w| = n, wR = w[n]w[n− 1] . . . w[1].

For words u, v ∈ Σ∗ with u = u1u2 . . . un and v = v1v2 . . . vm, we denote with u · v the

concatenation u · v = u1u2 . . . unv1v2 . . . vm of u and v. We might also write uv instead

of u · v. For two languages L1, L2 ⊆ Σ∗, their concatenation is defined as L1 ·L2 = {uv |
u ∈ L1, v ∈ L2}, again writing L1L2 if convenient. We abbreviate the concatenation of a

language L with itself as L2 and inductively Ln = L · Ln−1 for n ∈ N. Then, the Kleene

closure of a language L is defined as L∗ =
⋃
n∈N L

n with the convention L0 = {ε}. Note

that L∗ always contains the empty word ε.

2.1.1 Models of Representation

A direct way to represent a regular language is by a regular expression.

Definition 1 (Regular Expression). Let Σ be a finite alphabet. We say that R is a

regular expression if R is

20 Formal Language Theory

• the empty set ∅,

• the empty word ε,

• a letter σ ∈ Σ,

• the alternation (R1|R2) of two regular expressions R1 and R2,

• the concatenation (R1 ·R2) of two regular expressions R1 and R2,

• the Kleene closure (R∗1) of a regular expression R1.

The language L(R) described by a regular expression R is inductively defined as

• if R = ∅, then L(R) = ∅,

• if R = ε, then L(R) = {ε},

• if R = σ, for some σ ∈ Σ, then L(R) = {σ},

• if R = (R1|R2), then L(R) = L(R1) ∪ L(R2),

• if R = (R1 ·R2), then L(R) = L(R1) · L(R2),

• if R = (R∗1), then L(R) = L(R1)∗.

As the alternation and concatenation is associative, we might omit brackets. For a

finite set S ⊆ Σ∗ we might abbreviate an alternation over all elements of S by writing S

instead. We now give some examples of regular languages which can easily be represented

by regular expressions.

Example 1. The set of all words of even length can be expressed as ((ΣΣ)∗). A language

over the alphabet Σ = {a, b, c} consisting of all words which either start and end with

an a or contain no a at all can be expressed as ((aΣ∗a)|((b|c)∗)). For a binary alphabet

Σ = {0, 1}, a language of special interest is parity consisting of all words with an odd

number of 1’s which can be expressed as (((0∗)1(0∗)1)∗)(0∗)1(0∗).

If the context is clear we might identify a regular language L with a regular expression R

describing L and omit brackets if there is no fear of confusion. Other important com-

putational models that characterize the class of regular languages are non-deterministic

and deterministic finite automata.

Definition 2 (NFA). We call A = (Q,Σ, δ, q0, F) a non-deterministic finite automaton

(NFA for short) if Q is a finite set of states, Σ is a finite input alphabet, δ is a transition

function Q× Σ→ 2Q, q0 is the initial state and F ⊆ Q is the set of final states.

2.1 Regular Languages 21

The transition function δ is generalized to sets of states Q′ ⊆ Q by δ(Q′, σ) =⋃
q∈Q′ δ(q, σ). We further generalize δ to words by δ(q, w) = δ(δ(q, w[1]), w[2..|w|]) for

w ∈ Σ∗. A word w ∈ Σ∗ is accepted by A if δ(q0, w) ∩ F 6= ∅ and the language accepted

by A is defined by L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}. We extend δ to sets of letters

Σ′ ⊆ Σ, letting δ(q,Σ′) =
⋃
σ∈Σ′ δ(q, σ).

Definition 3 (DFA). Let A = (Q,Σ, δ, q0, F) be a NFA. We further call A a deterministic

finite automaton, (DFA for short) if for each pair of states q ∈ Q and letter σ ∈ Σ the

image of δ is a singleton set, i.e., |δ(q, σ)| = 1.

Thereby, every DFA is also an NFA. For simplicity, we might define δ as δ : Q×Σ→ Q

for DFAs, i.e., δ maps to single states instead of sets of states. By definition, δ is a

total function. Later, we might also consider the case that δ is a partial function. In

this case, we call A a partial DFA. As the synchronization problem does not consider

start or final states, we might omit q0 and F in the description of A. If we want to

emphasize this, we might call a DFA A = (Q,Σ, δ) without start and final states a

deterministic semi-automaton (DSA) for short. If it is not of relevance to distinguish

between non-deterministic or deterministic finite automata, we might simply write finite

automaton.

One can also consider regular languages as algebraic objects. In this perception, Σ∗

is the free monoid generated by Σ. Here, we will consider three important monoids

associated with a regular language and a DFA. We begin with the equivalence relation

introduced by Myhill and Nerode [Myhill, 1957, Nerode, 1958] which describes the sets

of words leading from the start state to each state in the minimal DFA representing a

regular language.

Definition 4 (Myhill-Nerode Equivalence Relation). Let L ⊆ Σ∗ be a regular language.

We define the Myhill-Nerode equivalence relation ∼L induced by L as

∀u, v ∈ Σ∗ : (u ∼L v ⇔ ∀w ∈ Σ∗ : (uw ∈ L⇔ vw ∈ L)) .

The equivalence classes Σ∗/∼L describe the state set of the minimal (with respect to

number of states) DFA accepting L. Namely, for each states q in the minimal DFA A =

(Q,Σ, δ, q0F) accepting L, there exists one equivalence class [w]∼L
such that δ(q0, w) = q,

and even stronger [w]∼L
= {w ∈ Σ∗ | δ(q0, w) = q}. Thereby, the index of the equivalence

relation ∼L is the number of states in the minimal DFA A accepting L and more general,

a language L is regular if and only if the index of ∼L is finite.

While ∼L identifies words behaving the same way in the minimal automaton with respect

to the initial state q0, the next relation refines Σ∗/∼L to identify words behaving the

22 Formal Language Theory

same way regardless from which state they are read.

Definition 5 (Syntactic Congruence Relation). Let L ⊆ Σ∗ be a regular language. We

define the syntactic congruence relation ≡L induced by L as

∀u, v ∈ Σ∗ : (u ≡L v ↔ ∀x, y ∈ Σ∗ : (xuy ∈ L↔ xvy ∈ L)) .

Here, words need to behave the same way with respect to membership in L under si-

multaneous concatenation of words from both sides. The syntactic congruence relation

defines the syntactic monoid ML = (Σ∗/ ≡L, ·, [ε]) with the concatenation operation and

the equivalence class of the empty word ε as neutral element. We can use the syntactic

monoid to define a regular language in the following way. Let hL : Σ∗ → Σ∗/ ≡L be the

syntactic homomorphism that maps each word w ∈ Σ∗ to its equivalence class under ≡L.

Then, L is recognized by ML if there exists a set S ⊆ Σ∗/ ≡L such that h−1
L (S) = L.

Note that the syntactic monoid Σ∗/ ≡L can be much bigger than Σ∗/ ∼L.

The next monoid considers the transitions induced by words on the state set of a DFA.

Definition 6 (Transition Monoid). Let A = (Q,Σ, δ) be a DFA. For σ ∈ Σ let

fσ : Q → Q be the transition function of the letter σ defined as fσ(q) = δ(q, σ). Let

TA be the semi-group generated by the set {fσ | σ ∈ Σ} with the function composition

operator. Together with the identity function fε : Q → Q mapping each state to itself,

TA forms a monoid and is called the transition monoid of A.

For the minimal DFA A, the transition monoid of A is isomorphic to the syntactic monoid

of L(A) [Straubing, 1994, p. 56].

We are now ready to illustrate the concept of a DFA, the Myhill-Nerode equivalence

relation, the syntactic monoid and the transition monoid on a concrete example.

Example 2. Let us consider the language L described by the regular expression

(b∗ab∗a(a|b))∗. A minimal DFA A accepting L is depicted in Figure 2.1. The set of

equivalence classes of the Myhill-Nerode equivalence relations of L can be represented

by {[ε], [a], [aa]}. A set of representatives of the syntactic monoid ML of L together with

the corresponding transitions in the transition monoid TA of A is listed in Table 2.1. A

good tool to compute and illustrate the syntactic monoid of a regular language can be

found in [Paperman, 2021].

Theorem 1 (Regular Languages [Hopcroft and Ullman, 1979]). The class of regular

languages is equal to the set of languages recognized by NFAs, or DFAs, or described

by regular expressions. Further, a language L is regular if and only if its syntactic

monoid ML is finite.

2.1 Regular Languages 23

q0start q1

q2

a

aa, b

b b

Figure 2.1: Minimal DFA A accepting the language L described by the regular expression
(b∗ab∗a(a|b))∗.

ML TA
ε q0 q1 q2

a q1 q2 q0

aa q2 q0 q1

b q0 q1 q0

ba q1 q2 q1

baa q2 q0 q2

bab q1 q0 q1

baba q2 q1 q2

babaa q0 q2 q0

baab q0 q0 q0

baaba q1 q1 q1

baabaa q2 q2 q2

ML TA
ab q1 q0 q0

aba q2 q1 q1

abaa q0 q2 q2

abab q0 q1 q1

ababa q1 q2 q2

ababaa q2 q0 q0

aab q0 q0 q1

aaba q1 q1 q2

aabaa q2 q2 q0

aabab q1 q1 q0

aababa q2 q2 q1

aababaa q0 q0 q2

Table 2.1: For the in Figure 2.1 introduced language L and minimal automaton A, the
table shows a choice of representatives of the congruence classes of the syntactic monoid
ML of L on the left with the corresponding transitions of the transition monoid TA of A
on the right. For readability, the table is split in half.

There are even more models of computations in which the class of regular languages can

be characterized. For instance, the set of languages which can be described as Monadic

Second Order sentences over words using the +1 predicate is exactly the class of regular

languages. With respect to grammars, the class of regular languages consists of all

languages which can be generated by grammars, where all production rules are of the

form A → ε, A → a or a → aB where A,B are non-terminals and a is a terminal.

Further, regarding circuit classes, the regular languages are contained in the circuit class

NC1 which consists of polynomial size circuits of logarithmic depth and bounded fan-in,

see [Straubing, 1994] for details.

24 Formal Language Theory

2.1.2 Subclasses of Regular Languages

Despite its apparent simplicity, the class of regular languages contains quite a number

of interesting strict subclasses such as star-free languages, and the subclasses of commu-

tative and permutation regular languages.

Star-Free Languages

We begin with the famous subclass of star-free languages, which can be classified by

plenty of models of computation, as it is the case for regular languages. The class of

star-free languages itself contains two well known infinite hierarchies of language classes,

which we will discuss in the next chapter. We first give a definition for star-free languages

by a certain type of regular expressions avoiding the Kleene star, which also gave the

class its name.

Definition 7 (Star-Free Expression). Let Σ be a finite alphabet. We say that R is

a star-free expression if R is ∅, ε, σ for σ ∈ Σ, (R1|R2) or (R1 · R2) for two star-free

expressions R1 and R2, or (R1), the complement of a star-free expression R1. The

language L(R) described by a star-free expression R is defined analogously to regular

expressions except for the last case which is replaced by the following. If R = (R1), then

L(R) = L(R1) = Σ∗ \ L(R1).

Star-free expressions forbid the use of the Kleene star but allow for using the complement

operator on languages. Nonetheless, several languages of which their ‘natural’ description

uses the Kleene star can still be represented by a star-free expression. For instance, the

language Σ∗ can be represented by the star-free expression ∅, and the language 1(0∗)1

over the alphabet {0, 1} can be represented by the star-free expression 1(∅1∅)1. On

the contrary, it is not possible to represent languages with inherently nested stars by a

star-free expression or stars reaching over several consecutive letters. For instance, the

language (1(0∗)1)∗ is not star-free.

The class of star-free languages can also be characterized through properties of the

syntactic monoid of the language. Namely, a regular language L is star-free if and only

if its syntactic monoid ML is aperiodic.

Definition 8 (Aperiodic Monoids). Let M = (S, ◦, 0) be a monoid. For an element

x ∈ S, we inductively define xn ◦ x = xn+1 for n ∈ N. Then, M is called aperiodic if and

only if for each x ∈ S there exists an n ∈ N such that xn = xn+1.

This means that for every element x, the cyclic subgroup of the submonoid generated

2.1 Regular Languages 25

by x is trivial [Rozenberg and Salomaa, 1997, p. 698].

Theorem 2 ([Schützenberger, 1965]). A language is star-free if and only if its syntactic

monoid is finite and aperiodic.

Therefore, the class of languages which can be described by star-free expressions is

identical to the class of regular languages with an aperiodic syntactic monoid. The class

of star-free languages can further be characterized as the class of languages which can

be described by First Order sentences over words using the < predicate, i.e., the class

FO[<], and by the circuit class AC0 [Straubing, 1994].

Straubing-Therien and Dot-Depth Hierarchy

While the star-free languages are quite restrictive, they still contain two interesting

infinite hierarchies of classes of languages, which we introduce next. Namely, the

Straubing-Thérien [Straubing, 1981, Thérien, 1981] and Cohen-Brzozowski’s dot-depth

hierarchy [Cohen and Brzozowski, 1971].

Definition 9 (Polynomial Closure). Let L ⊆ Σ∗ be a language. We say that L is a

marked product of the languages L0, L1, . . . , Lk if L = L0σ1L1 · · ·σkLk, where the σi’s

are letters from Σ and Li ⊆ Σ∗ for 0 ≤ i ≤ k. For a class of languagesM, the polynomial

closure ofM is the set of languages that are finite unions of marked product of languages

from M.

Definition 10 (Concatenation Hierarchy). Let M be a class of languages. We define

the concatenation hierarchy of basis M as follows.

• For the basis level 0, let M0 =M.

• For level n+ 1/2, Mn+1/2 is the polynomial closure of level n, and

• for level n+ 1, Mn+1 is the Boolean closure of level n+ 1/2.

Definition 11 (Straubing-Thérien Hierarchy). The Straubing-Thérien Hierarchy is the

concatenation hierarchy of the basis {∅,Σ∗}. Their levels are denoted by Ln, respectively

Ln+1/2.

Definition 12 (Dot-Depth Hierarchy). Let F be the class of all finite and co-finite

languages. Then, the dot-depth hierarchy is the concatenation hierarchy of basis F .

The levels of the dot-depth hierarchy are denoted by Bn, respectively Bn+1/2.

26 Formal Language Theory

Apart from level B0, the dot-depth hierarchy coincides with the concatenation hierarchy

starting with the language class {∅, {ε},Σ+,Σ∗}. Clearly, within each hierarchy each

level n ≥ 0 (respectively half level) is contained in the next half level (respectively full

level),

Bn+1/2 ⊆ Bn+1 ⊆ Bn+3/2 and Ln+1/2 ⊆ Ln+1 ⊆ Ln+3/2.

Concerning the respectively other hierarchy, each level is contained between two full

levels of the other hierarchy. More formally, we have the following relations [Pin, 1998].

Theorem 3. For n ≥ 1 it holds that

Ln−1/2 ⊆ Bn−1/2 ⊆ Ln+1/2 and Ln ⊆ Bn ⊆ Ln+1.

In particular, L0 ⊆ B0, B0 ⊆ B1/2, and L0 ⊆ L1/2.

Both hierarchies are infinite for alphabets of at least two letters and completely exhaust

the class of star-free languages, meaning that the infinite union of each hierarchy yields

the class of star-free languages. For singleton letter alphabets, both hierarchies collapse

to B0 and L1, respectively. Next, we give some more intuition on the first levels of both

hierarchies.

Straubing-Thérien hierarchy: A language of Σ∗ is of level 0 if and only if it is empty

or equal to Σ∗. The languages of level 1/2 are exactly those languages that are a finite

(possibly empty) union of languages of the form Σ∗σ1Σ∗σ2 · · ·σkΣ∗, where the σi’s are

letters from Σ. The languages of level 1 are finite Boolean combinations of languages of

the form Σ∗σ1Σ∗σ2 · · ·σkΣ∗, where the σi’s are letters. These languages are also called

piecewise testable languages. In particular, all finite and co-finite languages are of level 1.

Finally, the languages of level 3/2 of Σ∗ are the finite unions of languages of the form

Σ∗0σ1Σ∗1σ2 · · ·σkΣ∗k, where the σi’s are letters from Σ and the Σi are subsets of Σ.

Dot-depth hierarchy: A language of Σ∗ is of dot-depth (level) 0 if and only if it is

finite or co-finite. The languages of dot-depth 1/2 are exactly those languages that are a

finite union of languages of the form u0Σ∗u1Σ∗u2 · · ·uk−1Σ∗uk, where k ≥ 0 and the ui’s

are words from Σ∗. The languages of dot-depth 1 are finite Boolean combinations of

languages of the form u0Σ∗u1Σ∗u2 · · ·uk−1Σ∗uk, where k ≥ 0 and the ui’s are words

from Σ∗.

Given a language represented by an NFA, it is not an easy task to decide the level of

this language in the hierarchies.

2.1 Regular Languages 27

Theorem 4 ([Arrighi et al., 2021a]). For each level L of the Straubing-Thérien or the

dot-depth hierarchies, the problem whether the language accepted by a given NFA is

contained in L is PSPACE-hard, even when restricted to binary alphabets.

For some of the lower levels of the hierarchies, we also have containment in PSPACE but

in general the exact complexity is unclear. Already for the third level of the Straubing-

Thérien hierarchy L3 it is a famous open question whether the problem is decidable at

all. See [Masopust, 2018, Place and Zeitoun, 2019] for an overview on the decidability

status of these questions. Checking containment for L0 up to L2 and B0 up to B1 for

DFAs can be done in NLOG and is also complete for this class by ideas similar to the

ones used in [Cho and Huynh, 1991].

A class of automata that is closely related to the lower levels of these hierarchies is the

class of partially ordered automata.

Definition 13 (Partially Ordered Automaton). Let A = (Q,Σ, δ, q0, F) be a finite au-

tomaton. We say that a state q is reachable from a state p, written p ≤ q, if there is a

word w ∈ Σ∗ such that q ∈ δ(p, w). We call A partially ordered if ≤ is a partial order.

We refer to a partially ordered NFA (DFA, respectively) as poNFA (poDFA, re-

spectively). Partially ordered NFAs (with multiple initial states) characterize the

class L3/2 [Schwentick et al., 2001], while partially ordered DFAs characterize the class

of R-trivial languages [Brzozowski and Fich, 1980], a class that is strictly in between L1

and L3/2.

Commutative Regular Languages

Next, we consider the subclass of commutative regular languages. For this class of

languages, membership of a word w in the language is completely determined by the

Parikh-image of w (for Parikh-image, see [Parikh, 1966]) or in other words, the order

of the letters in a word does not matter. Therefore, commutative languages generalize

unary languages.

Definition 14 (Commutative DFA). Let A = (Q,Σ, δ, q0, F) be a DFA. We call A a

commutative DFA if for every state q ∈ Q and every pair of words u, v ∈ Σ∗ it holds that

δ(q, uv) = δ(q, vu). We call a regular language L a commutative regular language, if it

can be accepted by a commutative DFA.

Clearly, the class of commutative regular languages forms a strict subclass of the class of

regular languages. Considering commutative star-free languages, we get an interesting

28 Formal Language Theory

picture of the Straubing-Thérien and dot-depth hierarchies restricted to commutative

languages [Arrighi et al., 2021a, Hoffmann, 2021c].

Theorem 5 ([Arrighi et al., 2021a]). For commutative star-free languages the levels Ln
of the Straubing-Thérien and Bn of the dot-depth hierarchy coincide for all full and half

levels, except for L0 and B0. Moreover, the hierarchy collapses at level one.

Permutation Regular Languages

Next, we introduce the class of permutation regular languages introduced in [Thierrin,

1968]. This class is characterized by DFAs with the constraint that no state has two

incoming transitions with the same letter.

Definition 15 (Permutation DFA). Let A = (Q,Σ, δ, q0, F) be a DFA. We call A a

permutation DFA if the transition monoid of A is a group, i.e., each letter induces a total

bijective map from the state set to itself. We call a regular language L a permutation

regular language if it can be accepted by a permutation DFA.

Permutation DFAs are also called reversible DFAs [Kunc and Okhotin, 2013, Pin, 1992].

Reversibility is stronger than determinism as it allows to deterministically navigate back

and forth between the steps of a computation. Remark that in the setting of DFAs, this

power results in a loss of expressiveness: contrary to more powerful models (for instance

Turing machines), reversible DFAs are less expressive than general DFAs.

2.2 Context-Free Languages

Next, we shift our focus from regular languages forming the third level of the Chomsky

hierarchy to context-free languages forming the second level [Chomsky, 1956].

2.2.1 (Non-Deterministic) Context-Free Languages

We begin with the general class of context-free languages characterized by (non-

deterministic) push-down automata.

Definition 16 (Push-down-Automata). We call M = (Q,Σ,Γ, δ, q0,⊥, F) a push-down

automaton (PDA for short) if Q is a finite set of states; the finite sets Σ and Γ are the

input and stack alphabet, respectively; δ is a finite transition function Q × Σ × Γ →

2.2 Context-Free Languages 29

2Q×Γ∗1; q0 is the initial state; ⊥ ∈ Γ is the stack bottom symbol which is only allowed

as the first (lowest) symbol in the stack, i.e., if δ(q, a, γ) 3 (q′, γ′) and γ′ contains ⊥,

then ⊥ only occurs in γ′ as its first letter and moreover, γ = ⊥; and F is the set of final

states.

We will only consider real-time push-down automata and forbid ε-transitions, as can

be seen in the definition. Note that the bottom symbol can be removed, but then

the computation gets stuck. If we want to emphasize, that a PDA M is using non-

determinism, i.e., that for some combination of state q, input letter σ and stack letter

γ the image δ(q, σ, γ) is of size bigger than one, we might call M a non-deterministic

push-down automaton, NPDA for short.

Following [Chistikov et al., 2019], a configuration of M is a tuple (q, υ) ∈ Q × Γ∗.

For a letter σ ∈ Σ, states q, q′ ∈ Q, and a stack content υ with |υ| = n we write

(q, υ)
σ−→ (q′, υ[1..(n − 1)]γ) if δ(q, σ, υ[n]) 3 (q′, γ). This means that the top of the

stack υ is the right end of υ. We also denote with −→ the reflexive transitive closure of

the union of
σ−→ over all letters in Σ. The input words on top of −→ are concatenated

accordingly, so that −→=
⋃
w∈Σ∗

w−→. The language L(M) accepted by a PDA M is

L(M) = {w ∈ Σ∗ | (q0,⊥)
w−→ (qf , γ), qf ∈ F}. We call a sequence of configurations

(q,⊥)
w−→ (q′, γ) a run induced by w, starting in q, and ending in q′. We might also call

q′ the final state of the run.

The class of context-free languages can further be characterized by context-free gram-

mars. Those are grammars where the left side of each production rule consists of only

one variable.

While the class of regular languages is closed under intersection, union, complement, con-

catenation and Kleene star, the context-free languages are not closed under intersection

and complement. Further, while for regular languages the intersection non-emptiness

and the equivalence problem are decidable, those problems are no longer decidable for

context-free languages [Schöning, 1997].

2.2.2 Deterministic Context-Free Languages

Next, consider the class of deterministic context-free languages characterized by deter-

ministic push-down automata.

Definition 17 (Deterministic Push-down-Automaton). Let M = (Q,Σ,Γ, δ, q0,⊥, F)

1With a finite transition function, we mean that δ only maps to finite sets in 2Q×Γ∗
.

30 Formal Language Theory

be a PDA. If for each triple (q, σ, γ) ∈ Q × Σ × Γ it holds that |δ(q, σ, γ)| ≤ 1, we call

M a deterministic push-down automaton, DPDA for short.

Again, we might identify the singleton sets in the image of δ with its respective elements.

We call a context-free language that can be recognized by a deterministic push-down

automaton a deterministic context-free language.

In contrast to other models of computation, such as finite automata or Turing machines,

the class of languages recognizable by deterministic push-down automata is a strict sub-

class of the class of languages recognizable by non-deterministic push-down automata.

For instance, consider the language L = {w$wR | w ∈ {0, 1}∗} over the alphabet Σ =

{0, 1, $}, where wR denotes the reversal of w. The language L is a deterministic context-

free language as it can be accepted by a deterministic push-down automaton which acts

in two phases. In the first phase, it pushes the symbols of w onto the stack until it reads

the single $ symbol in the word. This causes the DPDA to enter the second phase in

which the input sequence is compared with the stack content and the word is accepted

if and only if this check of phase 2 is successful, i.e., the remainder of the input word is

identical with the stack content read from top to bottom. The crucial observation here

is that there is a special symbol $ which indicates the end of the sub-word w and the

beginning of the sub-word wR which causes the push-down automaton to switch from

phase 1 to phase 2. Further, it is ensured that each word in the language contains only

one symbol $. If we drop this guarantee, i.e., either allow $ to appear in w or remove the

special symbol $ at all, we arrive at a language which is still context-free but inherently

needs non-determinism in an accepting push-down automaton and is hence no longer

contained in the class of deterministic context-free languages.

While the class of general context-free languages is closed under union, concatenation

and Kleene star, but not under intersection and complement, the picture for determin-

istic context-free languages is quite different. In contrast, this class is closed under

complement but not closed under union, intersection, concatenation or Kleene star.

Like context-free languages, the intersection non-emptiness problem for deterministic

context-free languages is undecidable [Schöning, 1997].

2.2.3 Counter Automata

Not all context-free languages need the full power of the stack to store arbitrary words.

For the class of one-counter languages it is sufficient to use the stack as a unary counter

where the actual number on the stack is not directly accessible, but can be increased,

decreased and tested for having value zero. An example for such a language is the famous

2.2 Context-Free Languages 31

language {anbn | n ∈ N}.

Definition 18 (One-Counter Automaton). We call M = (Q,Σ, δ, q0, F) a one-counter-

automaton if the following holds. The set Q is a finite set of states, Σ is a finite input

alphabet, δ : Q× (Σ∪ {ε})× {−1, 0, 1} → 2Q×{−1,0−1} is a transition function2, q0 is the

initial state and F is a set of final states.

Note that M does not have a stack alphabet and further allows for ε-transitions. Let

sgn: Z → {−1, 0,+1} be a function returning the sign of an integer. A configuration

of M is a tuple (p, x) ∈ Q × Z. For two configurations (p, x), (q, y) ∈ Q × Z and a

letter σ ∈ (Σ∪{ε}), we write (p, x)
σ−→ (q, y) if δ(p, σ, s) 3 (q,∆) with s,∆ ∈ {−1, 0, 1},

s = sgn(x), and y = x+∆. As for push-down automata, we denote with −→ the reflexive

transitive closure of the union of
σ−→ over all letters in Σ. The input words on top of

−→ are concatenated accordingly, so that −→=
⋃
w∈Σ∗

w−→. We say that a word w

is accepted by a one-counter automaton M if there exists a sequence of configurations

(q0, 0)
w−→ (q, 0) with q ∈ F . Hence, w is accepted if it leads M into an accepting state

such that the counter has value zero at the end of the computation. The language L(M)

accepted by a one-counter automaton M is L(M) = {w ∈ Σ∗ | (q0, 0)
w−→ (qf , 0), qf ∈

F}. If the context is clear, we may refer to a one-counter automaton simply as a counter

automaton. Again, if for all tuples (q, σ, s) ∈ Q × (Σ ∪ {ε}) × {−1, 0, 1} it holds that

|δ(q, σ, s)| ≤ 1 and further, if |δ(q, ε, s)| = 1 implies |δ(q, σ, s)| = 0 for all σ ∈ Σ, we

call M a deterministic one-counter automaton and identify the singleton sets in the

image of δ with their elements.

As for context-free languages, the intersection non-emptiness problem for deterministic

one-counter automata is undecidable [Böhm and Göller, 2011].

Next, we consider further restricted subclasses of counter automata, where we are not

allowed to access any information about the counter value during the computation. The

following two classes of counter automata were first introduced in [Greibach, 1978].

Definition 19 (Blind Counter Automaton). Let M = (Q,Σ, δ, q0, F) be a one-counter

automaton. We say that M is blind, if for each q ∈ Q, and σ ∈ (Σ ∪ {ε}) it holds that

δ(q, σ,−1) = δ(q, σ, 0) = δ(q, σ, 1).

In other words, the machine must behave in exactly the same way regardless of whether

the counter is negative, zero, or positive. Hence, the transition is ‘blind’ with respect to

the state of the counter. Note that M still needs to accept with a zero counter as it is

still a one-counter automaton. Next, we consider partially blind counter automata.

2Here, the set {−1, 0, 1} in the domain of δ indicates whether the counter is smaller, equal, or greater
than zero, while the set {−1, 0, 1} in the image indicates whether the counter is decremented, not altered,
or incremented by this transition.

32 Formal Language Theory

Definition 20 (Partially Blind Counter Automaton). Let M = (Q,Σ, δ, q0, F) be a one-

counter automaton. We say that M is partially blind, if for each q ∈ Q, and σ ∈ (Σ∪{ε})
it holds that (1) δ(q, σ,−1) = ∅ and (2) δ(q, σ, 0) = δ(q, σ, 1).

The difference between partially blind and blind counter automata is that partially blind

automata are not allowed to count below zero. Again, as for blind counter automata,

the transition of a partially blind counter automata for non-negative counter values must

not depend on the value of the counter.

The class of languages recognizable by partially blind counter automata is incomparable

with the class of languages recognizable by blind automata [Boasson, 1973, Jantzen and

Kurganskyy, 2003, Latteux, 1977]. Both are strict subclasses of languages recognizable

by counter automata.

Example 3. An example for a language which can be accepted by all three models of

counter automata is the language {anbn | n ∈ N}. Let #σ be a function returning the

number of occurrences of the letter σ in a word w. In contrast to the last example, the

language {w ∈ {a, b}∗ | #a(w) = #b(w)}, can be accepted by a blind counter automaton

but not by a partially blind automaton as depending on the distribution of a’s and b’s in

the word the counter necessarily needs to take negative values for some words. In con-

trast, the language {w ∈ {a, b}∗ | #a(w) = #b(w)∧∀i ∈ [|w|] : #a(w[1..i]) ≥ #b(w[1..i])}
can be accepted by a partially blind automaton as the latter condition is satisfied if the

counter, counting the difference in the number of a’s against b’s, never runs below zero.

A language recognizable by a counter automaton which cannot be recognized by neither

a blind, nor a partially blind automaton is for instance {axbyczdw | x, y, z, w ∈ N, x =

y∧z = w}. Here, reading an input word w, a counter automaton must decide after read-

ing the last b whether the first condition enforcing the number of consecutive a’s being

equal to the number of consecutive b’s is satisfied before the number of c’ is counted.

Otherwise, there is no way to distinguish the remaining difference of a’s and b’s from the

difference of c’s and d’s after reading w completely.

2.2.4 Finite-Turn Push-Down Automata

Instead of restricting the stack alphabet of a push-down automaton we can also obtain

a smaller language class by restricting the behavior of the stack. Here, one option is to

restrict the number of times the automaton switches between increasing and decreasing

the height of a stack. We call pushd-down automata with the restriction of switching

only a finite number of times between these two phases for each word in the recognized

language, a finite-turn push-down automata.

2.2 Context-Free Languages 33

w

stack height

w

stack height

Figure 2.2: Two illustrative stack height profile of a push-down automaton reading an
input word w. The one on the left consists of only one upstroke and hence has zero
turns. In contrast, the height profile on the right consists of an upstroke, followed by a
downstroke, and again an upstroke and hence has two turns.

Finite-turn PDAs are introduced in [Ginsburg and Spanier, 1966]. From the formal

language side, it is known that one-turn PDAs characterize the well-known family of

linear context-free languages, usually defined via grammars. In our setting, the automata

view is more interesting. We adopt the definition in [Valiant, 1973]. For a PDA M an

upstroke of M is a sequence of configurations induced by an input word w such that no

transition decreases the stack-height. Accordingly a downstroke of M is a sequence of

configurations in which no transition increases the stack-height. A stroke is either an

upstroke or downstroke. Note that exchanging the top symbol of the stack is allowed in

both an up- and a downstroke.

Definition 21 (n-Turn PDA). Let M be a PDA. We call M an n-turn PDA if for all

words w ∈ L(M) accepted by M , every accepting sequence of configurations induced by

w can be split into at most n+ 1 strokes.

Especially, for 1-turn PDAs each sequence of configurations induced by an accepting

word consists of one upstroke followed by at most one downstroke.

Example 4 (Stack Height Profile). We illustrate the concept of a finite-turn PDA by

considering the stack height profiles in Figure 2.2. A stack height profile plots for a

sequence of configurations, the height of the stack, i.e., the size of the string γ ∈ Γ∗ on

the stack, against the letters of the input word. The stack height profile depicted on the

left of Figure 2.2 consists of only one upstroke and hence has zero turns. In contrast,

the stack height profile on the right consists of an upstroke, followed by a downstroke,

and again an upstroke and hence has two turns.

2.2.5 Visibly Push-Down Languages

Instead of restricting the stack height profile in terms of number of turns, we can as-

sociate the alteration of the stack height with the read input letter. If this alteration

34 Formal Language Theory

is independent of the current state, we arrive at the subclass of visibly push-down lan-

guages which share a lot of nice properties with regular languages as we explain later.

Due to these ‘regular’ properties, visibly push-down languages and their respective au-

tomaton model of visibly push-down automata are of great interest in the field of model

checking [Bouajjani et al., 1997, Esparza et al., 2003, Ball and Rajamani, 2000] as they

are still rich enough to model program analysis questions [Alur and Madhusudan, 2004].

A visibly push-down automaton, VPDA for short, is a PDA where the input alphabet Σ

can be partitioned into Σ = Σcall ∪ Σint ∪ Σret such that the change in the stack height

is determined by the partition of the alphabet.

Definition 22 (Visibly Push-Down Automaton [Alur and Madhusudan, 2004]). Let

M = (Q,Σ,Γ, δ, q0,⊥, F) be a PDA. We call M a visibly push-down automaton if M

does not have any ε-transitions and there is a partition Σ = Σcall∪Σint∪Σret and δ can be

redefined as a partition δ = δc∪δi∪δr such that δc : Q×Σcall → Q×(Γ\{⊥}) puts a symbol

on the stack, δi : Q × Σint → Q leaves the stack unchanged, and δr : Q × Σret × Γ → Q

reads and pops a symbol from the stack. If ⊥ is the symbol on top of the stack, then ⊥
is only read and not popped. We call letters in Σcall call or push letters; letter in Σint

internal letters; and letters in Σret return or pop letters.

The language class accepted by VPDA is equivalent to the class of languages accepted

by nested word automata (see [Chistikov et al., 2019]).

What makes visibly push-down languages especially interesting is that they share several

nice properties with regular languages. For instance, the class of visibly push-down lan-

guages is closed under intersection, union, concatenation, Kleene-star, and complement

with respect to the set of all well matched words [Alur and Madhusudan, 2004, Ludwig,

2019]. Recall that context-free languages are not closed under intersection and comple-

ment. Visibly push-down languages further obey nice properties with respect to decision

problems. So the following questions are decidable for given visibly push-down automata

M1 and M2: is L(M1) = L(M2), is L(M1) ⊆ L(M2), as well as is L(M1) = ∅, whereas the

former two problems are undecidable for context-free languages [Alur and Madhusudan,

2004, Ludwig, 2019].

If not only the stack height is predefined by the input letter but also the exact stack

content, we arrive at the class of very visibly push-down automata, VVPDA for short,

introduced in [Ludwig, 2019].

Definition 23 (Very Visibly Push-Down Automaton). Let M = (Q,Σcall ∪ Σint ∪
Σret,Γ, δc ∪ δi ∪ δr, q0,⊥, F) be a VPDA. We call M a very visibly push-down automaton

if for each letter σ ∈ Σ and all states p, q ∈ Q for δc(p, σ) 3 (p′, γp) and δc(q, σ) 3 (q′, γq)

it holds that γp = γq.

2.2 Context-Free Languages 35

Example 5. Every VPDA for which |Γ \ {⊥}| = 1 holds is already a very visibly push-

down automaton. Thereby, again the language {anbn | n ∈ N} is an example for a very

visibly push-down language.

On the contrast, the counter language {w ∈ {a, b}∗ | #a(w) = #b(w)} is not visible as

depending on the ratio between read a’s and b’s each letter either has to cause a push

or pop from the stack.

A language that is visibly but not very visibly [Ludwig, 2019, p. 78] is

{ambnaobocbm−n | m,n, o ∈ N,m ≥ n}.

Here, a VPDA must note with a special symbol on the stack when the second block of

a’s begins, which is not possible for VVPDAs.

An example for a context-free language that is neither a counter language nor a visibly

push-down language is {w$wR | w ∈ {0, 1}∗}.

36 Formal Language Theory

Chapter 3

Computational Complexity

3.1 Classical Time and Space Classes

Next, we introduce the concept of a Turing machine, or TM for short. We first give an

intuition of the machine model. A Turing machine consists of a finite state control, an

infinite work-tape divided into cells and a tape head that can access one tape cell in each

step. Each computation starts with the input word w on the tape, the tape head is on

the first position of w and every cell to the left and right of w is assumed to contain the

blank symbol �. In each step, the TM reads the symbol in the cell under the tape head,

updates its current state via its transition function, rewrites the symbol in the cell under

the head, and either moves the head one position to the left, to the right or stays on the

current cell. Starting in the initial state q0, the TM accepts input w if it ever reaches an

accepting state qf ∈ F during the computation.

Definition 24 (Turing Machine). Let M = (Q,Σ,Γ,�, δ, q0, F). We call M a non-

deterministic Turing machine if the following holds.

• Q is a finite set of states,

• Σ is a finite input alphabet,

• Γ ⊇ Σ is a finite tape alphabet,

• � ∈ Γ \ Σ is a dedicated blank symbol,

• δ : Q× Γ→ 2Q×Γ×{L,N,R} is a transition function,

• q0 ∈ Q is the initial state, and

38 Computational Complexity

• F ⊆ Q is a set of final states.

If for all q ∈ Q, γ ∈ Γ it holds that |δ(q, γ)| ≤ 1, then we call M a deterministic Turing

machine, DTM for short. We abbreviate a non-deterministic Turing machine as an NTM.

If it is not important whether a Turing machine is deterministic or non-deterministic,

we simply use the term Turing machine and abbreviate it as a TM.

We call (α, q, β) a configuration of M if the following holds. We have that α = �α̂ ∈ Γ∗

and β = β̂� ∈ Γ∗ with α̂β̂ being the content of the tape where α̂ starts with the leftmost

non-blank symbol on the tape and β̂ ends with the rightmost non-blank symbol on the

tape. The current state of the TM is q and the tape head is on the cell separating the

string αβ with α written to the left of this cell and β starting in the cell under the head,

written to the right. On input w ∈ Σ∗, the TM starts in configuration (ε, q0, w). Let

C = (α, q, β) and C ′ = (α′, q′, β′) be two configurations of M . Let |α| = a and |β| = b.

Then, we say that M transitions from configuration C to configuration C ′, denoted as

C `M C ′, if and only if one of the following three cases is true.

• δ(q, β[1]) 3 (q′, β′[1], N), |α′| = a, |β′| = b, α′ = α, and β′[2..b] = β[2..b]

• δ(q, β[1]) 3 (q′, β′[2], L), |α′| = a − 1, |β′| = b + 1, α′ = α[1..a − 1], β′[1] = α[a],

and β′[3..b+ 1] = β[2..b]

• δ(q, β[1]) 3 (q′, α′[a + 1], R) = 1, |α′| = a + 1, |β′| = b − 1, α′[1..a] = α[1..a], and

β′[1..b− 1] = β[2..b].

In other words, we say that M transitions from C to C ′ if the tape content of both

configurations is identical, except for the cell under the head in configuration C, and the

content of this cell as well as the current state changes according to δ. Further, the head

must move at most one step between these two configurations, also according to δ.

With `∗M we denote the reflexive, transitive closure of `M . We call a configura-

tion (α, q, β) an accepting configuration if q ∈ F . Let w ∈ Σ∗ be an input word.

We call a sequence of configurations (�, q0, w�), (α1, p1, β1), (α2, p2, β2), . . . , (αn, pn, βn)

a run of M on w, if (�, q0, w�) `M (α1, p1, β1) and for each 1 ≤ i ≤ n − 1,

(αi, pi, βi) `M (αi+1, pi+1, βi+1). We call a run an accepting run, if (αn, pn, βn) is

an accepting configuration. The set of stings L(M) accepted by M is defined as

{w ∈ Σ∗ | ∃α, β ∈ Γ∗, q ∈ F : (�, q0, w�) `∗M (α, q, β)}. We say that a TM M solves a

computational problem P ⊆ Σ∗ if and only if L(M) = P . We make the convention that

a TM immediately halts after reaching any accepting configuration.

3.1 Classical Time and Space Classes 39

Definition 25 (Time and Space Bounds). Let M be a TM. If there exists a function

f : N→ N, such that ∀n ∈ N,∀w ∈ Σn, M halts after at most f(n) steps on input w, we

say that M is time bounded by the function f . For a function g : N→ N, we call M space

bounded by the function g if ∀n ∈ N,∀w ∈ Σn, M halts on input w and if w is accepted,

then for each accepting run of M on w, it holds that each configuration C = (α, p, β) in

this run satisfies |αβ| ≤ g(n).

Now, we are ready to define several standard complexity classes. We say that a Turing

machine M is polynomial-time (respectively polynomial-space) bounded, if there exists

a polynomial function f : N → N (respectively polynomial function g : N → N) such

that M is time bounded by f (respectively space bounded by g). We say that a Turing

machine is exponential-time bounded, if there exists an exponential function f : N → N,

i.e., a function in 2n
O(1)

, such that M is time bounded by f . We say that a Turing

machine is logarithmic-space bounded, if there exists a logarithmic function g : N → N
such that M is space bounded by g.

Definition 26 (Standard Complexity Classes). We denote the class of computational

problems solvable by

• deterministic logarithmic-space bounded Turing machines as LOG,

• non-deterministic logarithmic-space bounded Turing machines as NLOG,

• deterministic polynomial-time bounded Turing machines as P,

• non-deterministic polynomial-time bounded Turing machines as NP,

• deterministic polynomial-space bounded Turing machines as PSPACE,

• non-deterministic polynomial-space bounded Turing machines as NPSPACE,

• deterministic exponential-time bounded Turing machines as EXPTIME,

• non-deterministic exponential-time bounded Turing machines as NEXPTIME.

One major issue in the computational complexity theory is that most relations between

complexity classes are only known as inclusions, but it is open whether these inclusions

are strict. One famous exception for this are the classes PSPACE and NPSPACE. Due to

an impressive result of Savitch from 1970, it holds that NPSPACE = PSPACE [Savitch,

1970]. For the remaining classes introduced above, we only know, due to the time and

space hierarchy theorems [Hopcroft and Ullman, 1979], that LOG and NLOG are strictly

contained in PSPACE, that P is strictly contained in EXPTIME, and that NP is strictly

40 Computational Complexity

contained in NEXPTIME. For all other relations in the following chain it is unknown (and

a very hard question), whether the inclusions are strict.

LOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME

Proving membership in one of these classes is relatively easy by constructing an algorithm

within the respective time and space bounds, but how can we show that a problem is

not contained in a complexity class, especially since we cannot even show that the class

inclusion itself is strict? A precise and sufficient solution to this problem is still open. A

framework to tackle this issue includes identifying hardest problems within a complexity

class. A hard problem L with respect to a complexity class X is a problem to which

all problems in X can be reduced. We will be more formal on this in a moment. This

reduction relation implies that if we could solve L more efficiently, i.e., if L is contained

in a potentially smaller class X ′ ⊆ X , then all problems in X are contained in X ′.
In practice, we are most concerned with the distinction of the complexity classes P

and NP, as the former class contains problems solvable in polynomial time while for

problems in the latter class in general only exponential time deterministic algorithms

are known. The question whether P = NP is one of the Millennium Prize Problems and

endowed with one million euros [Jaffe, 2006]. The first problem shown to be a hardest

problem for the complexity class NP is the satisfiability problem (SAT for short) for

Boolean formulas, by a famous proof by Cook [Cook, 1971] that encodes Turing machine

computations into SAT formulas. Especially, for the SAT problem a lot of effort has

been made over the last, at least, five decades trying to find algorithms with a better

worst case complexity than the trivial exponential time algorithm of iterating through all

possible variable assignments. All of these attempts have been unsuccessful so far. This

gives some indication that P 6= NP which is the prevailing opinion in the complexity

theory community. There are even quite popular tools for proving conditional lower-

bounds, such as the exponential time hypothesis (ETH) and the strong exponential time

hypothesis (SETH), roughly based on the assumption that SAT cannot be be solved in

sub-exponential time.

We will now formally introduce the concepts of a reduction, as well as hardness and

completeness for a complexity class.

Definition 27 (Reduction). Let L1 ⊆ Σ∗ and L2 ⊆ Γ∗ be two computational prob-

lems. We call a computable function f : Σ∗ → Γ∗ a many-one reduction if the following

condition holds,

∀x ∈ Σ∗ : x ∈ L1 ⇔ f(x) ∈ L2.

If there exists a many-one reduction from L1 to L2 we say that L1 reduces to L2, or is

3.2 Parameterized Complexity 41

reducible to L2 and denote this by L1 ≤ L2. If f can be computed by a polynomial-time

bounded deterministic Turing machine, we call f a polynomial-time many-one reduction.

In this case we write L1 ≤P L2.

Definition 28 (Completeness). Let X ⊆ 2Σ∗ be a class of computational problems. Let

L̂ ⊆ Σ∗ be a computational problem. If ∀L ∈ X it holds that L ≤P L̂, then we say that

L̂ is X -hard under polynomial-time reductions. If further L̂ ∈ X , then we say that L̂ is

X -complete (under polynomial-time many-one reductions).

As it is widely believed that SAT cannot be solved in polynomial time and SAT was

proven to be NP-complete by Cook [Cook, 1971], showing that a problem is NP-hard is

a strong indication that the problem is not contained in P.

Polynomial time reductions are only useful to identify hard problems within complexity

classes including and above NP as here the reduction has less computational power than

the Turing machine associated with the complexity class. For the class P (and NLOG),

we need reductions computable in logarithmic space in order to identify useful hard

languages (under polynomial-time reduction every problem in P is P-hard) and for LOG

we even need to restrict ourselves to AC0 reductions.

3.2 Parameterized Complexity

The theory of Parameterized Complexity, was invented by Downey and Fellows [Downey

and Fellows, 1999] as an attempt to deal with the fact that there is little hope to find

algorithms for NP-complete problems with a worst-case running time which is polynomial

in the size n of the input. The idea behind parameterized algorithms is to identify hard

problems (such as NP-hard) that do not require an exponential running time in the whole

input size but instead the exponential blowup is fully dependent on a part of the input.

This part is called the parameter of the problem. This parameter could for instance be

a natural number associated with the input, such as the size of a sought vertex cover,

or it could be a structural parameter, such as the treewidth of the input graph. If

this parameter is small, an algorithm whose running time is only exponential in the

parameter and polynomial in the whole input would still be quite efficient even though

the running time is not polynomial. The class of fixed-parameter tractable problems

(FPT for short) generalizes this idea by allowing not only exponential but any function

in the parameter. In order to define FPT, we first generalize a computational problem

L ⊆ Σ∗ to a parameterized computational problem (L, κ) where κ is a function returning

the value of the parameter for each actual instance x ∈ Σ∗.

42 Computational Complexity

Definition 29 (FPT). The class of fixed-parameter tractable problems consists of all

parameterized problems (L, κ), with L ⊆ Σ∗, for which there exists a deterministic

Turing machine M and functions f, g : N → N with the following property. On each

input x ∈ Σ∗, M decides membership x ∈ L in time f(κ(x)) · g(|x|), where g is a

polynomial function and f is any computable function.

Considering the problems in FPT as being efficiently solvable again raises the question

of whether there are parameterized problems (for instance in NP) not efficiently solv-

able, and how we could show or at least indicate this. This led to the invention of the

W-hierarchy where the first two level W[1] and W[2] are of special interest. Generally

speaking, we can consider the hard problems in W[1] as not likely to be fixed-parameter

tractable. As before, we use the notion of a reduction to indicate that a problem not

only belongs to (for instance) W[1], but is unlikely to belong to FPT. As we are now talk-

ing about parameterized problems, we also have to update the concept of a reduction to

deal with the parameter.

Definition 30 (Parameterized Reduction). Let (L1, κ1) and (L2, κ2) be parameterized

problems with L1 ⊆ Σ∗ and L2 ⊆ Γ∗. We call a function ϕ : Σ∗ → Γ∗ an fpt-reduction if

the following conditions hold.

• For all x ∈ Σ∗ holds x ∈ L1 ⇔ ϕ(x) ∈ L2.

• The reduction ϕ can be computed by a deterministic TM with running time

bounded by f(κ1(x)) · g(|x|) where g is a polynomial function and f is any com-

putable function.

• There is a computable function h : N → N such that κ2(ϕ(x)) ≤ h(κ1(x)) for

all x ∈ Σ∗.

We will only give a definition for the first two levels of the W-hierarchy which can

be defined via single and multi-tape Turing machines. A multi-tape Turing machine

is a Turing machine that has not only one but m infinite tapes for its computation.

The head of the TM is therefore split into m heads (one for each tape) which can

independently move in each step. The transition function δ then depends on the current

symbol under each head in combination, meaning that the symbol under the head on

tape i can influence the action performed on tape j. For the definition of W[1] and W[2]

we make the convention that undefined transitions, i.e., those for which δ maps to the

empty set, are not included in the description of a Turing machine.

Definition 31 (Class W[1]). We define the class W[1] as the set of all parameterized

problems that can be reduced via an fpt-reduction to the bounded Halting problem of

3.2 Parameterized Complexity 43

non-deterministic one-tape Turing machines defined as:

Input: Non-deterministic one-tape Turing machine M and integer k ∈ N.

Question: Does M halt, starting on the empty tape, after at most k steps?

Here, the number k is the parameter of the problem.

As we are using fpt-reductions, the parameter of the problem we reduce to (bounded

Halting problem) is bounded by some function in the parameter of the problem we reduce

from. Hence, the maximal running time of the NTM in the image of the reduction is

bounded by some computable function in the parameter of the problem we reduce from.

Thereby, the ‘allowed non-determinism’ of the Turing machine in the image is bounded

by the parameter of the input instance.

Definition 32 (Class W[2]). We define the class W[2] as the set of all parameterized

problems that can be reduced via an fpt-reduction to the bounded Halting problem of

non-deterministic multi-tape Turing machines defined as:

Input: Non-deterministic multi-tape Turing machine M and integer k ∈ N.

Question: Does M halt, starting on the empty tape, after at most k steps?

Here, the number k is the parameter of the problem.

Note that the number of tapes is not restricted. Further, this is the only and crucial

difference between the definition of W[1] and W[2]. We now give examples of a problem

contained (or complete) for each class.

Example 6. All three examples are parameterized version of graph problems where the

parameter is the natural parameter of the problem. Hence, for each problem the input

consists of an undirected graph G = (V,E) and an integer k. Then, the question is

• Vertex Cover: Does there exists a vertex cover in G of size at most k, i.e.,

is there a subset V ′ ⊆ V with |V ′| ≤ k such that for each e ∈ E it holds that

e ∩ V ′ 6= ∅?

• Clique: Does there exists a clique in G of size at least k, i.e., is there a subset

V ′ ⊆ V with |V ′| ≥ k such that for each u, v ∈ V ′ with u 6= v it holds that

{u, v} ∈ E?

• Dominating Set: Does there exists a dominating set of size at most k, i.e., is

there a subset V ′ ⊆ V with |V ′| ≤ k such that for each u ∈ (V \ V ′) there exists a

vertex v ∈ V ′ with {u, v} ∈ E?

The Vertex Cover problem with parameter k is fixed-parameter tractable, i.e., it is

contained in FPT. In contrast, the Clique problem with parameter k is W[1]-complete

44 Computational Complexity

and thereby believed not to be contained in FPT. The Dominating Set problem with

parameter k seems to be even harder as it is W[2]-complete. We refer to [Flum and

Grohe, 2006] for proofs of these claims.

Finally, we introduce a parameterized complexity class containing the complete infi-

nite W-hierarchy. Here, the exponential blowup cannot be bounded to concern only the

parameter, but we still do not need the whole input length in the exponent of an ex-

ponential function to bound the running time of an algorithm solving problems in this

class.

Definition 33 (Class XP). The class XP consists of all problems L ⊆ Σ∗ solvable by

a deterministic Turing machine that decides membership x ∈ L on input x in time

O(|x|f(κ(x))) where f : N→ N is some computable function.

Note that the hierarchy of parameterized complexity classes is askew to the classical

hierarchy including NP, PSPACE (and the polynomial hierarchy in between). Therefore,

there are PSPACE complete problems with a parameterized version in FPT and on the

other hand problems in NP with a W[2]-hard parameterized version.

Chapter 4

Overview of Scientific Results in

Part II

Part II consists of the six research papers introduced in Chapter 1. In this chapter, we

give an overview on the main results obtained in each paper. For an introduction to

each paper, we refer to Chapter 1. Here, we directly give the definitions of the studied

problems and state the obtained complexity results in the form of a table. Finally, we

state open problems for each paper. Each paper in Part II is a slight modification of

the published work in the sense that missing proofs are reintegrated into the extended

abstracts.

Computational Complexity of Synchronization under Regular Constraints

In Chapter 7, we present the work in [Fernau et al., 2019]. There, we are interested in

finding synchronizing words which fulfill some regular constraints, i.e., are contained in a

regular constraint language. More formally, for a fixed partial DFA B = (Σ, P, µ, p0, F),

we define the constrained synchronization problem:

Definition 34. L(B)-Constr-Sync

Input : Deterministic complete finite automaton A = (Σ, Q, δ).

Question: Is there a synchronizing word w for A with w ∈ L(B)?

The automaton B will be called the constraint automaton.

We give a full analysis of the L(B)-Constr-Sync problem for constraint automata

with two states and up to a ternary alphabet. We observe that for any two-state partial

DFA B over a unary or binary alphabet the problem L(B)-Constr-Sync is in P. For

46 Overview of Scientific Results in Part II

Case Language

1 a(b+ c)∗

(a+ b+ c)(a+ b)∗

(a+ b)(a+ c)∗

2 (a+ b)∗c
(a+ b)∗ca∗

(a+ b)∗c(a+ b)∗

(a+ b)∗cc∗

3 a∗b(a+ c)∗

a∗(b+ c)(a+ b)∗

4 a∗b(b+ c)∗

(a+ b)∗c(b+ c)∗

a∗(b+ c)(b+ c)∗

Table 4.1: Constraint languages accepted by constraint automata with two states and
three letters causing a PSPACE-hard L(B)-Constr-Sync problem.

two state partial DFAs B over a ternary alphabet, a full analysis yields only solvability

in P or PSPACE-completeness as complexities for L(B)-Constr-Sync. The constraint

automata B yielding PSPACE-hard versions of the problem are listed in Table 4.1 rep-

resented by their accepted language given as a regular expression. The languages are

grouped by their technical similarities, i.e., reductions used to obtain the result.

We further obtain general results such as the following. If the constraint automaton B is

returning, i.e., from any state there exists a word mapping this state back to the initial

state q0, then L(B)-Constr-Sync is solvable in polynomial time. The problem is also

solvable in polynomial time if every word v ∈ Σ∗ can be extended to a word in L(B),

i.e., if { v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L(B) } = Σ∗.

We further show that for general constraint automaton, the L(B)-Constr-Sync is

contained in NP if there is a letter σ, such that each loop in the automaton is labeled by

a unary word from {σ}∗. In this case we also obtain an XP algorithm with parameter

“number of loops labeled with σ”. We further present technical results that lift the

obtained upper and lower bounds to wider classes of constraint automata with arbitrary

number of states and letters.

Open Problems

• Based on the work in [Fernau et al., 2019] a line of research considering subclasses

of regular languages as constraint languages was pursued in [Hoffmann, 2020a,

Hoffmann, 2021a, Hoffmann, 2021b, Hoffmann, 2020b, Hoffmann, 2020c]. Still,

47

a full classification of the complexity of L-Constr-Sync for regular constraint

languages L is an open research problem.

• So far, we only observed containment in P, NP-completeness and PSPACE-

completeness as complexities for L(B)-Constr-Sync. Motivated by a remark

of Rystsov [Rystsov, 1983] in a related setting, one could also ask if there are regu-

lar constraint languages yielding L(B)-Constr-Sync problems that are complete

for other levels of the polynomial-time hierarchy.

Synchronization under Dynamic Constraints

In Chapter 8, we present the work in [Wolf, 2020]. This research paper was awarded with

the 2021 publication prize of the Graduate Center of the University of Trier, Faculty IV.

A video (in German) of the presentation of the results to the public during the award

can be found under https://youtu.be/kmDPUmUt-R4.

In Chapter 8, we are interested in restricting the order of states in which a synchronizing

word w transitions through the automaton. Thereby, we distinguish between tracking

the order of states appearing in the set of active states, i.e., in the set Q.w[i] for i ≤ |w|,
and tracking the order of states on the individual paths induced by w. We study three

different ways how a synchronizing word can induce an order on the state set. There,

the first two orders compare the last appearances of states while the third compares last

with first appearances of different states. The considered decision problem then consists

of a DFA as input together with a partial order R and the question is whether there

exists a synchronizing word such that the respectively induced state order coincides with

the input partial order. For the third order we also consider a variant of the problem

where the input partial order is actually a total order. We now define the problem and

orders formally. We give an example of a DFA together with pairs contained and not

contained in the induced orders in Figure 4.1. The obtained complexity results are listed

in Table 4.2.

For any of the orders lw ⊆ Q×Q defined below, we define the problem of synchronization

under order and subset synchronization under order as:

Definition 35 (Sync-Under-lw). Given a DFA A = (Q,Σ, δ) and a relation R ⊆ Q2.

Does there exist a word w ∈ Σ∗ such that |Q.w| = 1 and R ⊆ lw?

Definition 36 (Subset-Sync-Under-lw). Given a DFA A = (Q,Σ, δ), S ⊆ Q, and

a relation R ⊆ Q2. Is there a word w ∈ Σ∗ with |S.w| = 1 and R ⊆ lw?

It is reasonable to distinguish whether the order should include the initial configuration

https://youtu.be/kmDPUmUt-R4

48 Overview of Scientific Results in Part II

1 2

345

a
b

ab

a

b
a

b

a

b

1 2 3 4 5
b 2 4 2 1 1
a 3 3 3 1 1
a 4 4 4 1 1
b 1 1 1 2 2
b 2 2 2 4 4
a 3 3 3 3 3

X 7

∝l<lw@s (1, 2) (2, 4)

∝l≤lw@s (2, 4) (2, 1)

∝l<lw@p (1, 2) (4, 5)

∝l≤lw@p (5, 5) (2, 4)

∝l<fw@p (5, 2) (4, 3)

Figure 4.1: DFA A (left) with all paths induced by w = baabba (middle) and relations
R consisting of single pairs forming a positive, resp. negative, instance for versions of
Sync-Under-lw (right).

of the automaton or if it should only describe the consequences of the chosen transitions.

In the former case, we refer to the problem as Sync-Under-0 -lw (starting at w[0]), in

the latter case as Sync-Under-1 -lw (starting at w[1]), and if the result holds for both

variants, we simply refer to is as Sync-Under-lw. This is particularly of interest when

states are left with the very first letter. Consider the order ∝l<lw@s and a tuple (q1, q2). If

both states are left with the very first letter and never become active while reading the

synchronizing word, then, the version Sync-Under-1 -lw allows us to ignore the tuple

(q1, q2) while for the version Sync-Under-1 -lw, the tuple is violated as the state q1 is

active in the initial configuration and hence q2 must become active at a later position.

Let first(q, w, S) be the function returning the minimum of positions at which the state q

appears as an active state over all paths induced by w starting at some state in S, i.e.,

first(q, w, S) = min{i | i ≤ |w|, q ∈ S.w[0..i]}. Accordingly, let last(q, w, S) return the

maximum of those positions, i.e., last(q, w, S) = max{i | i ≤ |w|, q ∈ S.w[0..i]}. Note

that first(q, w, S) = 0 for all states q ∈ S and > 0 for q ∈ Q\S. If q does not appear on a

path induced by w on S, then set first(q, w, S) := |w|+ 1 and last(q, w, S) := −1. In the

Sync-Under-1 -lw problem variant, the occurrence of a state at position 0 is ignored

(i.e., if q occurs only at position 0 while reading w on S, then last(q, w, S) = −1).

Definition 37 (Order l < l on sets). Let A = (Q,Σ, δ) be a DFA. For every word

w ∈ Σ∗ we define the relation ∝l<lw@s⊆ Q2 as follows. For two states p, q ∈ Q it holds that

p ∝l<lw@s q :⇔ last(p, w,Q) < last(q, w,Q).

Definition 38 (Order l ≤ l on sets). Let A = (Q,Σ, δ) be a DFA. For every word

w ∈ Σ∗ we define the relation ∝l≤lw@s⊆ Q2 as follows. For two states p, q ∈ Q it holds that

p ∝l≤lw@s q :⇔ last(p, w,Q) ≤ last(q, w,Q).

Definition 39 (Order l < l on paths). Let A = (Q,Σ, δ) be a DFA. For every word

49

Synchronization Subset Synchronization
Order l < l l ≤ l l < f l<f -tot l </≤ l l < f l<f -tot

Set
0 PSPACE-c PSPACE-c – – PSPACE-c – –
1 PSPACE-c PSPACE-c – – PSPACE-c – –

Path
0 in NP NP-hard PSPACE-c P PSPACE-c PSPACE-c NP-c

1 in NP PSPACE-c PSPACE-c NP-c PSPACE-c PSPACE-c NP-c

Table 4.2: Overview of the computational complexity for synchronization (on the left),
and subset synchronization under order (on the right) for relations ∝l<lw@s, ∝l<lw@p, ∝l≤lw@s,

∝l≤lw@p, and ∝l<fw@p (tot is short for total). The upper two rows consider the set variants of
the orders while the lower two rows consider the path variants. The 0 in the first column
indicates that we are considering the problem variant Sync-Under-0 -lw while the 1
indicates the variant Sync-Under-1 -lw, in which we ignore the initial configuration
with respect to the induced order.

w ∈ Σ∗ we define the relation ∝l<lw@p⊆ Q2 as follows. For two states p, q ∈ Q it holds that

p ∝l<lw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) < last(q, w, {r}).

Definition 40 (Order l ≤ l on paths). Let A = (Q,Σ, δ) be a DFA. For every word

w ∈ Σ∗ we define the relation ∝l≤lw@p⊆ Q2 as follows. For two states p, q ∈ Q it holds that

p ∝l≤lw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) ≤ last(q, w, {r}).

Definition 41 (Order l < f on paths). Let A = (Q,Σ, δ) be a DFA. For every word

w ∈ Σ∗ we define the relation ∝l<fw@p⊆ Q2 as follows. For two states p, q ∈ Q it holds that

p ∝l<fw@p q ⇔ ∀r ∈ Q : last(p, w, {r}) < first(q, w, {r}).
Definition 42 (Sync-Under-Total-∝l<fw@p). Given a DFA A = (Q,Σ, δ), a strict and

total order R ⊆ Q2. Is there a word w ∈ Σ∗ with |Q.w| = 1 and R =∝l<fw@p?

The orders ∝l<lw@s,∝l<lw@p,∝l≤lw@s,∝l≤lw@p model our first introductory example of a box whose

lids should be closed after rotating the box, while the order ∝l<fw@p models the second

example of a box containing water which should not be rotated after the lids were opened.

Open Problems

• We only know that Sync-Under-∝l<lw@p is contained in NP but it is open whether

the problem is NP-complete or if it can be solved in polynomial time.

• Conversely, for Sync-Under-0 -∝l≤lw@p the problem is NP-hard but its precise com-

plexity is unknown. It would be quite surprising to observe membership in NP

50 Overview of Scientific Results in Part II

here since it would separate the complexity of this problem from the closely re-

lated problem Sync-Under-1 -∝l≤lw@p.

• Further, it remains open whether for the other orders a drop in the complexity can

be observed, when R is strict and total, as it is the case for ∝l<fw@p.

Synchronizing Deterministic Push-Down Automata Can Be Really Hard

In Chapter 9 we present the work in [Fernau et al., 2020]. There, we generalize the

synchronization problem from deterministic finite automata to deterministic push-down

automata (DPDA for short).

Let M = (Q,Σ,Γ, δ, q0,⊥, F) be a DPDA. We discuss three different concepts of syn-

chronizing DPDAs. For all concepts we demand that a synchronizing word w ∈ Σ∗ maps

all states, starting with an empty stack, to the same synchronizing state, i.e., for all

q, q′ ∈ Q : (q,⊥)
w−→ (q, υ), (q′,⊥)

w−→ (q, υ′). In other words, for a synchronizing word

all runs started on some states in Q end up in the same final state. In addition to syn-

chronizing the states of a DPDA we will consider the following two conditions for the

stack content:

(1) υ = υ′ = ⊥,
(2) υ = υ′.

We will call (1) the empty stack model and (2) the same stack model. In the third case,

we do not put any restrictions on the stack content and call this the arbitrary stack model.

Definition 43 (Sync-DPDA-Empty).

Given: DPDA M = (Q,Σ,Γ, δ,⊥).

Question: Is there a word w ∈ Σ∗ that synchronizes M in the empty stack model?

For the same stack model, we refer to the synchronization problem above as Sync-

DPDA-Same and as Sync-DPDA-Arb in the arbitrary stack model. Variants of these

problems are defined by replacing the DPDA in the definition above by a deterministic

counter automaton (DCA), a deterministic partially blind counter automaton (DPBCA),

a deterministic blind counter automaton (DBCA), or by adding turn restrictions, in

particular, whether the automaton is allowed to make zero or one turns of its stack

movement.

The obtained complexity results are listed in Table 4.3.

51

class of automata empty stack model same stack model arbitrary stack model

DPDA undecidable undecidable undecidable
1-Turn-Sync-DPDA undecidable undecidable undecidable
0-Turn-Sync-DPDA PSPACE-complete undecidable PSPACE-complete
DCA undecidable undecidable undecidable
1-Turn-Sync-DCA PSPACE-complete PSPACE-complete PSPACE-complete
0-Turn-Sync-DCA PSPACE-complete PSPACE-complete PSPACE-complete
DPBCA decidable decidable decidable
DBCA decidable decidable decidable

Table 4.3: Complexity status of the synchronization problem for different classes of
deterministic real-time push-down automata in different stack synchronization modes as
well as finite-turn variants of the respective synchronization problem.

Open Problems

• The decidability for the synchronization problems concerning deterministic par-

tially blind counter automata is obtained from the decidable reachability problem

in Petri nets. But the latter problem is only known to be decidable with a non-

elementary time complexity. Therefore, an open problem is to find an algorithm

solving the Sync-DPBCA problem in the respective stack models with (at least)

an elementary time complexity.

• A direction for further research is to look into variants of synchronization problems

for DPDAs, such as restricting the length of a potential synchronizing word. It

follows from the NP-hardness of this problem for DFAs [Rystsov, 1980, Eppstein,

1990] and the polynomial-time solvability of the membership problem for DPDAs

that for unary encoded length bounds this problem is NP-complete for DPDAs

as well, and contained in EXPTIME for binary encoded length bounds. The pre-

cise complexity of this problem for binary encoded length bounds is left to future

research.

Synchronization of Deterministic Visibly Push-Down Automata

In Chapter 10 we present the work in [Fernau and Wolf, 2020]. There, we consider the

same setting of synchronizing deterministic push-down automata as in Chapter 9 but

we restrict the class of DPDAs to visibly push-down automata. In contrast to the unde-

cidability of the synchronization problem in all three stack models for general DPDAs,

for visibly PDAs, the synchronization problem is contained in EXPTIME and hence de-

cidable in all three models. For the empty stack model, we even obtain solvabilty in

polynomial time and for the same stack model, membership in PSPACE. The problems

52 Overview of Scientific Results in Part II

class of automata empty stack model same stack model arbitrary stack model

DVPDA P PSPACE-compl PSPACE-hard
DVPDA-NoReturn P PSPACE-compl P
DVPDA-Return P P PSPACE-hard
n-Turn-Sync-DVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVPDA P PSPACE-compl PSPACE-compl
DVVPDA P P P
n-Turn-Sync-DVVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVVPDA P PSPACE-compl PSPACE-compl
DVCA P P P
n-Turn-Sync-DVCA PSPACE-hard PSPACE-hard PSPACE-hard
1-Turn-Sync-DVCA PSPACE-compl PSPACE-compl PSPACE-compl
0-Turn-Sync-DVCA P PSPACE-compl PSPACE-compl

Table 4.4: Complexity status of the synchronization problem for different classes of
deterministic real-time visibly push-down automata in different stack synchronization
modes. For the n-turn synchronization variants, n takes all values not explicitly listed.
All our problems are in EXPTIME.

Sync-DVPDA, Sync-DVVPDA, and Sync-DVCA are defined as in the previous

section by restricting the input DPDA to a deterministic visibly push-down automaton

(DVPDA), a deterministic very visibly push-down automaton (DVVPDA), and a deter-

ministic visibly counter automaton (DVCA), respectively. The finite-turn variants are

formally defined as follows.

Definition 44. n-Turn-Sync-DVPDA-Empty

Given: DVPDA M = (Q,Σ,Γ, δ, q0,⊥, F).

Question: Is there a synchronizing word w ∈ Σ∗ in the empty stack model, such that

for all states q ∈ Q, the sequence of configurations (q,⊥)
w−→ (q,⊥) consists of at most

n+ 1 strokes?

For the Sync-DVPDA problem, we also consider two variants of the problem where we

have the restrictions that for Sync-DVPDA-NoReturn, the set of return letters of the

input DVPDA is empty, whereas for Sync-DVPDA-Return, the set of return letters

of the input DVPDA must not be empty. By making this distinction, we can observe a

difference in the complexity between the same stack and arbitrary stack setting which

behaved identically in the other automaton models. The obtained results are summarized

in Table 4.4.

Open Problems

• While all problems listed in Table 4.4 are contained in EXPTIME, the table lists

53

several problems for which their known complexity status still contains a gap be-

tween PSPACE-hardness lower bounds and EXPTIME upper bounds. Presumably,

their precise complexity status is closely related to upper bounds on the length of

synchronizing words which is a topic for future research.

• As for general DPDAs, a direction for future research on the synchronizability of

deterministic visibly push-down automata is to consider related variants of syn-

chronization problems such as the problem of short synchronizing words, subset

synchronization, synchronization into a subset, and careful synchronization. Each

of these problems is well understood for DFAs. Here is one subtlety that comes

with short synchronizing words: While for finding synchronizing words of length

at most k for DFAs, it does not matter if the number k is given in unary or in bi-

nary due to the known cubic upper bounds on the lengths of shortest synchronizing

words, this will make a difference in other models where such polynomial length

bounds are unknown. More precisely, for instance with DVPDAs, it is rather ob-

vious that with a unary length bound k, the problem becomes NP-complete, while

the status is unclear for binary length bounds. As there is no general polynomial

upper bound on the length of shortest synchronizing words for VPDAs, they might

be of exponential length. Hence, we do not get membership in PSPACE easily, not

even for synchronization models concerning DVPDA for which general synchroniz-

ability is solvable in P, as it might be necessary to store the whole word on the

stack in order to test its synchronization effects.

On the Complexity of Intersection Non-Emptiness for Star-Free Language

Classes

In Chapter 11 we present the work in [Arrighi et al., 2021a] which is accepted for publica-

tion at FSTTCS 2021. There, we study the computational complexity of the intersection

non-emptiness problem for finite automata restricted to different subclasses. Thereby,

our main focus lies on the Straubing-Thérien hierarchy [Place and Zeitoun, 2019, Straub-

ing, 1981, Straubing, 1985, Thérien, 1981] and the Cohen-Brzozowski dot-depth hierarchy

[Brzozowski, 1976, Cohen and Brzozowski, 1971, Place and Zeitoun, 2019].

Definition 45. Intersection Non-emptiness

Given: Finite automata Ai = (Qi,Σ, δi, q(0,i), Fi), for 1 ≤ i ≤ m.

Question: Is there a word w that is accepted by all Ai, i.e., is
⋂m
i=1 L(Ai) 6= ∅?

Observe that the automata have a common input alphabet.

We show that the complexity landscape of the Intersection Non-emptiness problem

54 Overview of Scientific Results in Part II

NLO
G

NP
PSPACE

L0 L 1
2

B0

L1

B 1
2

L 3
2

B1

L2

Figure 4.2: Complexity landscape of the Intersection Non-emptiness problem for
the lower levels of the Straubing-Thérien and dot-depth hierarchies.

restricted to levels of those hierarchies is already determined by the very first levels

of either hierarchy as depicted in Figure 4.2. The first main result states that the

Intersection Non-emptiness problem for NFAs and DFAs accepting languages from

the level 1/2 of the Straubing-Thérien hierarchy are NLOG-complete and LOG-complete,

respectively, under AC0 reductions. Additionally, this completeness result holds even in

the case of unary languages.

This result is optimal in the sense that the problem for DFAs already becomes NP-hard

if we allow a single DFA to accept a language from L1, and require all the others to ac-

cept languages from L1/2. Subsequently, we analyze the complexity of Intersection

Non-emptiness when all input automata are assumed to accept languages from one

of the levels of B0 or B1/2 of the dot-depth hierarchy, or from the levels L1 or L3/2 of

the Straubing-Thérien hierarchy. It is worth noting that NP-hardness follows straight-

forwardly from the fact that Intersection Non-emptiness for DFAs accepting finite

languages is already NP-hard [Rampersad and Shallit, 2010]. Containment in NP, on

the other hand, is a more delicate issue, and here the representation of the input au-

tomaton plays an important role. A characterization of languages in L3/2 in terms of

languages accepted by partially ordered NFAs [Schwentick et al., 2001] is crucial for us,

combined with the fact that Intersection Non-emptiness when the input is given by

such automata is NP-complete [Masopust and Thomazo, 2015]. Intuitively, the proof in

[Masopust and Thomazo, 2015] follows by showing that the minimum length of a word

in the intersection of languages in the level 3/2 of the Straubing-Thérien hierarchy is

bounded by a polynomial in the sizes of the minimum partially ordered NFAs accept-

ing these languages. To prove that Intersection Non-emptiness is in NP when the

input automata are given as DFAs, we prove a new result establishing that the num-

ber of Myhill-Nerode equivalence classes in a language in the level L3/2 is at least as

large as the number of states in a minimum partially ordered automaton representing

the same language.

Interestingly, we show that the proof technique used to prove this last result does not

generalize to the context of NFAs. To prove this, we carefully design a sequence (Ln)n∈N≥1

55

of languages over a binary alphabet such that for every n ∈ N≥1, the language Ln can be

accepted by an NFA of size n, but any partially ordered NFA accepting Ln has size 2Ω(
√
n).

To the best of our knowledge, this is the first exponential separation between the state

complexity of general NFAs and that of partially ordered NFAs. While this result does

not exclude the possibility that Intersection Non-emptiness for languages in L3/2

represented by general NFAs is in NP, it gives some indication that proving such a

containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is

already PSPACE-complete if all accepting languages are from the level B1 of the dot-depth

hierarchy or from the level L2 of the Straubing-Thérien hierarchy.

Open Problems

• First, we were not able to prove containment in NP for the Intersection Non-

emptiness problem when the input automata are allowed to be NFAs accepting

a language in the level 3/2 or in the level 1 of the Straubing-Thérien hierarchy.

Interestingly, we have shown that such containment holds in the case of DFAs, but

have shown that the technique we have used to prove this containment does not

carry over to the context of NFAs. Therefore, the most immediate open question

is if Intersection Non-emptiness for NFAs accepting languages in B1/2, L1, or

L3/2 is complete for some level higher up in the polynomial-time hierarchy, or if this

case is already PSPACE-complete. An intermediate step in solving this problem

might be to consider so called subatomic non-deterministic automata introduced

recently in [Myers and Urbat, 2021].

• Another open question is whether one can capture the levels of the polynomial

hierarchy in terms of the Intersection Non-emptiness problem when the input

automata are assumed to accept languages belonging to levels of a sub-hierarchy

of L2. Such sub-hierarchies have been considered for instance in [Kĺıma and Polák,

2011].

• A systematic study of the two well-known Straubing-Thérien and dot-depth hier-

archies for related problems like Non-universality for NFAs or Union Non-

universality for DFAs is another promising direction of future research. Note

that Union Non-universality (similar to Intersection Non-emptiness) has

an implicit Boolean operation (now union instead of intersection) within the prob-

lem statement, while Non-universality lacks this implicit Boolean operation.

This might lead to a small ‘shift’ in the discussions of the hierarchy levels that

involve Boolean closure.

56 Overview of Scientific Results in Part II

class of automata Decomp Bound-Decomp

DFAs EXPSPACE PSPACE
permutation DFAs NP/FPT PSPACE
commutative permutation DFAs NLOG NP-complete
unary DFAs LOG LOG

Table 4.5: Complexity of studied problems with containing classes, with our contribution
in bold. The membership in EXPSPACE for general DFAs is obtained in [Kupferman
and Mosheiff, 2015] and the membership in LOG for unary DFAs is obtained in [Jecker
et al., 2020].

Decomposing Permutation Automata

In Chapter 12 we present the work in [Jecker et al., 2021]. There, our aim is to deter-

mine whether a given DFA A can be represented as the intersection of a finite set of

smaller DFAs, or in other words, if A can be decomposed into smaller DFAs.

We say that a DFA A is composite if its language can be decomposed into the intersection

of the languages of smaller DFAs. More precisely, we say that A is k-factor composite if

there exist k DFAs (Ai)1≤i≤k with less states than A such that L(A) =
⋂k
i=1 L(Ai). We

study the two following problems:

DFA Decomp

Given: DFA A.

Question: Is A composite?

DFA Bound-Decomp

Given: DFA A and integer k ∈ N.

Question: Is A k-factor composite?

Previous to our work, the best known complexity bounds for the Decomp problem

for general DFAs were membership in EXPTIME and NLOG-hardness [Kupferman and

Mosheiff, 2015]. For the restricted classes of permutation DFAs, a PSPACE algorithm

and for normal permutation DFAs, a P algorithm was given in [Kupferman and Mosheiff,

2015]. Recently, the Decomp problem was shown to be decidable in LOG for DFAs with

a unary alphabet [Jecker et al., 2020]. The trade-off between number and size of factors

was studied in [Netser, 2018], where automata showing extreme behavior are presented,

i.e., DFAs that can either be decomposed into a large number of small factors, or a small

number of large factors.

In the work presented in Chapter 12, we expand the domain of instances over which the

Decomp problem is tractable. We focus on permutation DFAs, and we propose new

techniques that improve the known complexities. The obtained complexity results are

summarized in Table 4.5.

We give an NP algorithm for permutation DFAs, and we show that the complexity

57

is directly linked to the number of non-accepting states. This allows us to obtain a

fixed-parameter tractable algorithm with respect to the number of non-accepting states.

Moreover, we prove that permutation DFAs with a prime number of states cannot be

decomposed.

We further consider commutative permutation DFAs, where the Decomp problem was

already known to be tractable, and we lower the complexity from P to NLOG, and even

LOG if the size of the alphabet is fixed. While it is easy to decide whether a commutative

permutation DFA is composite, we show that rich and complex behaviors still appear in

this class: there exist families of composite DFAs that require polynomially many factors

to get a decomposition. More precisely, we construct a family (Amn)m,n∈N of composite

DFAs such that Amn is a DFA of size nm that is (n − 1)m−1-factor composite but not

(n−1)m−1−1-factor composite. Note that, prior to this result, only families of composite

DFAs requiring sub-logarithmically many factors were known [Jecker et al., 2020].

Finally, we study the Bound-Decomp problem. For practical purposes, having many

factors in a decomposition is undesirable as dealing with a huge number of small DFAs

might end up being more complex than dealing with a single DFA of moderate size.

The Bound-Decomp problem copes with this issue by limiting the number of factors

allowed in the decompositions. We show that this flexibility comes at a cost: somewhat

surprisingly, this problem is NP-complete for commutative permutation DFAs, a setting

where the Decomp problem is easy. We also show that this problem is in PSPACE for

the general setting, and in LOG for unary DFAs.

Open Problems

• The techniques presented in this paper rely heavily on the group structure of tran-

sition monoids of permutation DFAs, thus cannot be used directly in the general

setting. They still raise interesting questions: Can we also obtain an FPT algo-

rithm with respect to the number of rejecting states in the general setting? Some

known results point that bounding the number of states is not as useful in general

as it is for permutation DFAs: while it is known that every permutation DFA with

a single rejecting state are not composite [Kupferman and Mosheiff, 2015], there

exist (non-permutation) DFAs with a single rejecting state that are composite.

• Another way to improve the complexity in the general setting would be to bound

the width of DFAs1: we defined here a family of DFAs with polynomial width,

do there exist families with exponential width? If this is not the case (i.e., every

1The width of a DFA A is the smalles k such that A is k-factor composite.

58 Overview of Scientific Results in Part II

composite DFA has polynomial width), we would immediately obtain a PSPACE

algorithm for the general setting.

• In this work, we focused on the Bound-Decomp problem, that limits the number

of factors in the decompositions. Numerous other restrictions can be considered.

For instance, the Fragmentation problem bounds the size of the factors: Given a

DFA A and k ∈ N, can we decompose A into DFAs of size smaller than k? Another

interesting restriction is proposed by the Compression problem, that proposes a

trade-off between limiting the size and the number of the factors: Given a DFA A,

can we decompose A into DFAs (Ai)1≤i≤k satisfying Σn
i=1|Ai| < |A|? How do these

problems compare to the ones we studied? We currently conjecture that the com-

plexity of the Fragmentation problem matches the Decomp problem, while the

complexity of the Compression problem matches the Bound-Decomp problem:

for commutative permutation DFAs, the complexity seems to spike precisely when

we limit the number of factors.

Chapter 5

Directions for Future Research

In this chapter, we discuss more general directions of future research. Hereby, we have

limited ourselves to four areas that are particularly promising and interesting in the eyes

of the author.

Completing Partial Automata to Synchronizing Automata While the synchro-

nization problem for DFAs is solvable in polynomial time, the question whether a partial

DFA is carefully synchronizing, i.e., synchronizable by a word that does not take an un-

defined transition on any path, is PSPACE-complete. Hence, if we do not care too much

about avoiding the undefined transitions, it is beneficial to simply complete the partial

automaton by defining the missing transitions such that the resulting automaton is syn-

chronizing. This is for instance the case in the original motivation of designing parts

orienters for assembly lines. In practice, some combinations of an orientation of a part

and the application of a modifier is simply not possible and hence not defined in the ab-

stract model. But as this combination can never occur in practice, we do not need to

restrict our model in forbidding this configuration, instead, we just do not care about it.

In order to reduce the complexity of finding a synchronizing word for the obtained model

we hence want to simply define these missing transitions in a way that yields a synchro-

nizing automaton. Unfortunately, the complexity of the problem whether a given partial

DFA can be completed in a way that yields a synchronizing complete DFA seems to be

a hard question to answer. So far, we were only able to answer related questions like

what is the complexity of the following two problems.

Definition 46 (State-Del-Car-Syn).

Given: DFA A = (Q,Σ, δ) and a number k ∈ N.

Question: Can we remove up to k states from A (with all its incident transitions) such

that the resulting automaton is carefully synchronizing?

60 Directions for Future Research

Definition 47 (Trans-Add-Car-Syn).

Given: Partial DFA A = (Q,Σ, δ) and a number k ∈ N.

Question: Can we add up to k transitions to A labeled by letters in Σ ∪ {c} with c /∈ Σ

such that the resulting automaton A′ is a carefully synchronizing deterministic partial

semi-automaton?

Both problems are PSPACE-complete. The corresponding proofs can be found in the

appendix of Part I in Chapter 6. For the original setting the fact that we have no control

on the target of an undefined transition makes it hard to construct any reduction. This

gives hope that the problem of completing a partial DFA into a synchronizing DFA can

be solved in an efficient way.

Synchronization and Diversity of Solutions For the next research direction, we

stay in the picture of modeling parts orienters of assembly lines via synchronizing au-

tomata. The designer of the assembly line might have additional soft constraints to

consider such as the price of a modifier or physical restrictions on the space available to

place the modifiers. Modeling those restrictions might lead to much harder synchroniza-

tion problems, for instance assigning the alphabet with a cost-function and searching for

a synchronizing sub-automaton which is induced by a subset of the input alphabet Σ

yields an NP-hard synchronization problem [Türker and Yenigün, 2015]. Restricting the

set of potential synchronizing words by an auxiliary regular language might even yield

a PSPACE-complete synchronization problem [Fernau et al., 2019] as well as restricting

the sequence of states in which a synchronizing word transitions the automaton [Wolf,

2020]. But not all of the side constraints which are of interest in designing the assembly

line are hard constraints, i.e., constraints that must be fit. They further might be only

vaguely expressible and are subject to subjective assessment. Hence, a good strategy

might be to not formally include them in the problem specification but instead ask for a

preferably diverse set of synchronizing words from which a subjective optimal synchro-

nizing word can then be chosen by the designer of the assembly line. This setting is the

topic of a recently submitted manuscript by Arrighi, Fernau, de Oliveira Oliveira, and

Wolf. The work formalizes a suitable setting of the notion of a diverse set of solutions

for synchronizing words and analyzes the complexity of the introduced setting including

FPT results, as it was recently done by the same authors in collaboration with Loksh-

tanov for the Kemeny rank aggregation problem in [Arrighi et al., 2021b] in the context

of Social Choice.

A New Complexity Class W[Sync] The multi-parameter analysis of the synchro-

nization problem and its variants began in [Fernau et al., 2015] where the parameterized

61

complexity of the short synchronizing word problem was analyzed.

Definition 48 (Short Sync Word).

Given: DFA A = (Q,Σ, δ) and integer k ∈ N.

Question: Is there a word w ∈ Σ∗ that synchronizes A and for which |w| ≤ k?

It was shown in [Fernau et al., 2015] that the problem Short Sync Word is W[2]-hard

when parameterized by k, it is NP-complete for |Σ| = 2, a result already obtained by

the original NP-completeness proof by Rystsov [Rystsov, 1980] and Eppstein [Eppstein,

1990], it is further in FPT for the parameter combination k and |Σ| or the parameter |Q|.
The problem was also studied for subclasses of DFAs in [Bruchertseifer and Fernau, 2021].

For the natural parameter k, on general DFAs, the problem was only known to be W[2]-

hard but it was open whether it is also contained in W[2]. Attempts to find the right

parameterized complexity class for the problem raised the impression that this is a hard

question and further, that the known complexity classes might not be suitable for the

Short Sync Word problem with parameter k. Quite the opposite, more W[2]-hard

problems, which are equivalent to Short Sync Word under fpt-reductions but are not

known to be included in W[2], were identified, such as Monoid Factorization with

standard parameter k and Bounded DFA Intersection with parameter k.

Definition 49 (Monoid Factorization [Cai et al., 1997]).

Given: A finite set Q, a collection F = {f0, f1, . . . , fm} of mappings fi : Q→ Q, and a

positive integer k ∈ N
Question: Is there a selection of at most k mappings fi1 , fi2 , . . . , fik′ with k′ ≤ k, with

ij ∈ {1, . . . ,m} for j = 1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′?

Definition 50 (Bounded DFA Intersection).

Given: A finite set A of DFAs over a common alphabet Σ and a positive integer k ∈ N.

Question: Is there a string w ∈ Σk that is accepted by each DFA in A?

This led to the definition of the complexity class W[Sync] with the Short Sync Word

problem as the defining complete problem for the class under fpt-reductions [Bruchert-

seifer and Fernau, 2020]. The class W[Sync] is embedded in the hierarchies of known

parameterized complexity classes by the inclusion relations1

W[2] ⊆ W[Sync] ⊆ WNL ∩W[P] ∩ A[2].

Other W[2]-hard problems contained in W[Sync] are Longest Common Subsequence

with standard parameter k, here W[Sync]-hardness is still open, or the CSP CNF Sat-

1In the following we name parameterized complexity classes not defined in this work. We refer
to [Flum and Grohe, 2006] for definitions and further details on these classes.

62 Directions for Future Research

isfiablity problem with parameter k which can be reduced to Longest Common

Subsequence [Fernau, 2021].

Definition 51 (Longest Common Subsequence).

Given: A set of strings {x1, x2, . . . , xl} over a common alphabet Σ and a positive

integer k ∈ N.

Question: Is there a string w ∈ Σk that occurs in each string xi for 1 ≤ i ≤ l as a

subsequence?

Definition 52 (CSP CNF Satisfiablity).

Given: Constraint formula ϕ on k variables x1, x2, . . . , xk over a finite universe U ,

consisting of a conjunction of atomic sentences xi = u for 1 ≤ i ≤ k, u ∈ U .

Question: Is ϕ satisfiable?

On the other hand, we have problems being hard for W[Sync] but which are not known to

be included in W[Sync] such as the Bounded NFA Non-Universality problem with

parameter k where membership in A[2] ∩W[P] is known but even membership in WNL

is open. For the related problem Bounded NFA Intersection with parameter k,

W[Sync]-hardness and membership in WNL is known but membership in A[2], W[P], and

hence also W[Sync] is open.

Definition 53 (Bounded NFA Non-Universality).

Given: An NFA A with input alphabet Σ and a positive integer k ∈ N.

Question: Is there a word w ∈ Σk that is not accepted by A?

Definition 54. Bounded NFA Intersection

Given: A finite set of NFAs A and a positive integer k ∈ N.

Question: Is there a word in Σk that is accepted by all NFAs in A?

Due to the variety of problems related to Short Sync Word the field of research on

the new complexity class W[Sync] is an interesting and fast growing field that aims at

better understanding the structure of W-classes.

Synchronizing Quantum Finite Automata A promising and interesting field of

research is the field of Quantum Computing that gained huge attention recently by the

physical realizations of multi qubit systems by IBM [IBM, 2021] and Google [AI, 2021],

among others. The field of Quantum Computing is a fast growing field and quantum

analogues to well studied fields of classical computing are developed frequently. Also

quantum variants of finite-state automata are introduced in the literature [Bhatia and

Kumar, 2019, Ambainis and Yakaryilmaz, 2015] but in contrast to classical DFAs the

63

standard setting of a quantum finite automaton is not set yet. As the field of quantum

finite automata is quite new and small, to the best of our knowledge, the synchronization

problem has not yet been generalized to the setting of quantum finite-state automata.

We will give in the following some ideas on how such a generalization could be made and

leave the precise analysis of the suggested problems to future research.2 For details on

Quantum Computing and the notation used in the following (which is standard in the

field of Quantum Computing), we refer to [Nielsen and Chuang, 2002].

We consider a one-way quantum finite automaton (QFA). A QFA is a 5-tuple M =

(Q,Σ, {Uσ | σ ∈ Σ}, q1, R) where Q is a finite set of (classical) states, Σ a finite input

alphabet, for each σ ∈ Σ, Uσ is a unitary transformation acting on a state in C|Q|, q1

describes the start state, and R is an accepting condition. As we are only interested in

state synchronization, we omit q1 and R in the following. The quantum state of M can

be any superposition of the basis states {|q〉 | q ∈ Q}. Hence, an active state of M can

be described as |ψ〉 =
∑

q∈Q αq |q〉 with αq ∈ C. For a word w ∈ Σ∗ with |w| = n we

denote the unitary operator associated with w as Uw = Uw[n]Uw[n−1] . . . Uw[1].
3

Next, we lift the concept of synchronization to quantum automata. We introduce two

different concepts of synchronization.

Definition 55 (Forward Setting). Let M = (Q,Σ, {Uσ | σ ∈ Σ}) be a QFA. M is

synchronizable [ε-synchronizable] if there exists a basis state |q〉 with q ∈ Q and a word

w ∈ Σ∗ such that for each p ∈ Q the probability that measuring the state Uw |p〉 against

|q〉 yields |q〉 is non-zero [greater than ε]. In other words 〈Uwp|q〉 > 0 or 〈Uwp|q〉 > ε,

respectively.

In this setting, we can easily define an analog to Sync-Into-Subset (δ(Q,w) ⊆ S?) as

follows.

Definition 56 (Quantum-Sync-Into-Subset).

Given: QFA M = (Q,Σ, {Uσ | σ ∈ Σ}), subset S ⊆ Q.

Question: Is there a word w ∈ Σ∗ such that for each p ∈ Q,
∑

s∈S 〈Uwp|s〉 > 0 [> ε]?

An analog to the Exact-Sync-Into-Subset problem (δ(Q,w) = S?) can be defined

as follows.

Definition 57 (Quantum-Exact-Sync-Into-Subset).

Given: QFA M = (Q,Σ, {Uσ | σ ∈ Σ}), subset S ⊆ Q.

Question: Is there a word w ∈ Σ∗ such that ∀p ∈ Q : ∀s ∈ S : 〈Uwp|s〉 > 0 [> ε]?

2The suggested definitions were obtained in a discussion together with Mateus de Oliveira Oliveira.
3Note that in Quantum Computing, states are multiplied from the right. As we begin with applying

the first letter of w, the unitary operators are ordered from right to left.

64 Directions for Future Research

To formulate the standard Sync-From-Subset problem that asks whether a subset

of states of an automaton can be synchronized, a backward setting seems to be more

natural for defining a quantum variant of the problem.

Definition 58 (Backward Setting). Let M = (Q,Σ, {Uσ | σ ∈ Σ}) be QFA. M is

synchronizable [ε-synchronizable] if there exists a basis state |q〉 with q ∈ Q and a word

w ∈ Σ∗ such that for each p ∈ Q the probability that U−1
w |q〉 collapses to |p〉 (on

measuring against |p〉) is non-zero [greater than ε].

The quantum analogue to the Sync-From-Subset (|δ(S,w)| = 1) problem can then

be defined as follows.

Definition 59 (Quantum-Sync-From-Subset).

Given: QFA M = (Q,Σ, {Uσ | σ ∈ Σ}), subset S ⊆ Q.

Question: Is there a word w ∈ Σ∗ and a state q ∈ Q, such that for each s ∈ S,

〈U−1
w q | s〉 > 0 [> ε]?

For the suggested definitions of synchronization problems for quantum finite sate au-

tomata, an immediate open problem is whether the forward and backward setting of the

problems are equivalent. Further, it unclear how large ε can be in a synchronizing quan-

tum automaton. From the perspective of this thesis, the computational complexity of

these problems is one of the main questions for future research in this direction. For in-

stance, are the suggested problems at least decidable? Is there a difference in complexity

between the non-zero and greater than ε setting? For probabilistic automata a synchro-

nizing word is defined in [Doyen et al., 2011] as an infinite word such that the probability

mass converges in concentrating in a single state. The question whether such an infi-

nite synchronizing word exists for a probabilistic automaton is shown to be undecidable

in [Doyen et al., 2012]. This could give a hint for undecidability of the synchronization

problem in our quantum setting even though we are considering only finite synchroniz-

ing words. Any progress in this direction would open a promising new direction for the

study of synchronization problems.

Bibliography

[Abdulla, 2012] Abdulla, P. A. (2012). Regular model checking. International Journal

on Software Tools for Technology Transfer, 14(2):109–118.

[AI, 2021] AI, G. Q. (2021). Explore the possibilities of quantum. https://quantumai.

google/. accessed: 18.10.2021.

[Almeida and Kĺıma, 2010] Almeida, J. and Kĺıma, O. (2010). New decidable upper

bound of the second level in the Straubing-Thérien concatenation hierarchy of star-

free languages. Discrete Mathematics and Theoretical Computer Science, 12(4):41–58.

[Alur and Madhusudan, 2004] Alur, R. and Madhusudan, P. (2004). Visibly pushdown

languages. In Babai, L., editor, Proceedings of the 36th Annual ACM Symposium on

Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 202–211. ACM.

[Alur and Madhusudan, 2009] Alur, R. and Madhusudan, P. (2009). Adding nesting

structure to words. Journal of the ACM, 56(3):16:1–16:43.

[Ambainis and Yakaryilmaz, 2015] Ambainis, A. and Yakaryilmaz, A. (2015). Automata

and quantum computing. CoRR, abs/1507.01988.

[Ananichev and Volkov, 2004] Ananichev, D. S. and Volkov, M. V. (2004). Synchroniz-

ing monotonic automata. Theoretical Computer Science, 327(3):225–239.

[Arenas et al., 2011] Arenas, M., Barceló, P., and Libkin, L. (2011). Regular languages

of nested words: Fixed points, automata, and synchronization. Theory of Computing

Systems, 49(3):639–670.

[Arrighi et al., 2021a] Arrighi, E., Fernau, H., Hoffmann, S., Holzer, M., Jecker, I.,

de Oliveira Oliveira, M., and Wolf, P. (2021a). On the complexity of intersection

non-emptiness for star-free language classes. In Bojanczyk, M. and Chekuri, C., ed-

itors, 41st IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Con-

ference, volume 213 of LIPIcs, pages 34:1–34:15. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik.

https://quantumai.google/
https://quantumai.google/

66 BIBLIOGRAPHY

[Arrighi et al., 2021b] Arrighi, E., Fernau, H., Lokshtanov, D., de Oliveira Oliveira, M.,

and Wolf, P. (2021b). Diversity in Kemeny rank aggregation: A parameterized ap-

proach. In Zhou, Z., editor, Proceedings of the Thirtieth International Joint Confer-

ence on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27

August 2021, pages 10–16. ijcai.org.

[Babari et al., 2016] Babari, P., Quaas, K., and Shirmohammadi, M. (2016). Synchro-

nizing data words for register automata. In Faliszewski, P., Muscholl, A., and Nie-

dermeier, R., editors, 41st International Symposium on Mathematical Foundations of

Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, volume 58 of

LIPIcs, pages 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Baier and Katoen, 2008] Baier, C. and Katoen, J. (2008). Principles of Model Checking.

MIT Press.

[Balasubramanian and Thejaswini, 2021] Balasubramanian, A. R. and Thejaswini, K. S.

(2021). Adaptive synchronisation of pushdown automata. In Haddad, S. and Varacca,

D., editors, 32nd International Conference on Concurrency Theory, CONCUR 2021,

August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 17:1–17:15.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Ball and Rajamani, 2000] Ball, T. and Rajamani, S. K. (2000). Bebop: A symbolic

model checker for boolean programs. In Havelund, K., Penix, J., and Visser, W., edi-

tors, SPIN Model Checking and Software Verification, 7th International SPIN Work-

shop, Stanford, CA, USA, August 30 - September 1, 2000, Proceedings, volume 1885

of Lecture Notes in Computer Science, pages 113–130. Springer.

[Bárány et al., 2006] Bárány, V., Löding, C., and Serre, O. (2006). Regularity problems

for visibly pushdown languages. In Durand, B. and Thomas, W., editors, STACS

2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, volume

3884 of Lecture Notes in Computer Science, pages 420–431. Springer.

[Béal and Perrin, 2016] Béal, M.-P. and Perrin, D. (2016). Synchronised Automata, page

213–240. Encyclopedia of Mathematics and its Applications. Cambridge University

Press.

[Bhatia and Kumar, 2019] Bhatia, A. S. and Kumar, A. (2019). Quantum finite au-

tomata: survey, status and research directions. CoRR, abs/1901.07992.

[Boasson, 1973] Boasson, L. (1973). Two iteration theorems for some families of lan-

guages. Journal of Computer and System Sciences, 7(6):583–596.

BIBLIOGRAPHY 67

[Böhm and Göller, 2011] Böhm, S. and Göller, S. (2011). Language equivalence of deter-

ministic real-time one-counter automata is NL-complete. In Murlak, F. and Sankowski,

P., editors, Mathematical Foundations of Computer Science 2011 - 36th International

Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume

6907 of Lecture Notes in Computer Science, pages 194–205. Springer.

[Bollig, 2016] Bollig, B. (2016). One-counter automata with counter observability. In

Lal, A., Akshay, S., Saurabh, S., and Sen, S., editors, 36th IARCS Annual Conference

on Foundations of Software Technology and Theoretical Computer Science, FSTTCS

2016, Proceedings, volume 65 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik.

[Bouajjani et al., 1997] Bouajjani, A., Esparza, J., and Maler, O. (1997). Reachabil-

ity analysis of pushdown automata: Application to model-checking. In Mazurkiewicz,

A. W. and Winkowski, J., editors, CONCUR ’97: Concurrency Theory, 8th Inter-

national Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, volume 1243 of

Lecture Notes in Computer Science, pages 135–150. Springer.

[Bouajjani et al., 2000] Bouajjani, A., Jonsson, B., Nilsson, M., and Touili, T. (2000).

Regular model checking. In Emerson, E. A. and Sistla, A. P., editors, Computer

Aided Verification, 12th International Conference, CAV, volume 1855 of LNCS, pages

403–418. Springer.

[Bouajjani et al., 2007] Bouajjani, A., Muscholl, A., and Touili, T. (2007). Permutation

rewriting and algorithmic verification. Information and Computation, 205(2):199–224.

[Bruchertseifer and Fernau, 2020] Bruchertseifer, J. and Fernau, H. (2020). Synchro-

nizing words and monoid factorization: A parameterized perspective. In Chen, J.,

Feng, Q., and Xu, J., editors, Theory and Applications of Models of Computation,

16th International Conference, TAMC 2020, Changsha, China, October 18-20, 2020,

Proceedings, volume 12337 of Lecture Notes in Computer Science, pages 352–364.

Springer.

[Bruchertseifer and Fernau, 2021] Bruchertseifer, J. and Fernau, H. (2021). Synchro-

nizing series-parallel deterministic finite automata with loops and related problems.

RAIRO-Theoretical Informatics and Applications, 55:7.

[Brzozowski, 1976] Brzozowski, J. A. (1976). Hierarchies of aperiodic languages.

RAIRO-Theoretical Informatics and Applications, 10(2):33–49.

[Brzozowski and Fich, 1980] Brzozowski, J. A. and Fich, F. E. (1980). Languages of

R-trivial monoids. Journal of Computer and System Sciences, 20(1):32–49.

68 BIBLIOGRAPHY

[Brzozowski and Knast, 1978] Brzozowski, J. A. and Knast, R. (1978). The dot-depth

hierarchy of star-free languages is infinite. Journal of Computer and System Sciences,

16(1):37–55.

[Cai et al., 1997] Cai, L., Chen, J., Downey, R. G., and Fellows, M. R. (1997). On

the parameterized complexity of short computation and factorization. Archive for

Mathematical Logic, 36(4-5):321–337.

[Caucal, 2006] Caucal, D. (2006). Synchronization of pushdown automata. In Ibarra,

O. H. and Dang, Z., editors, Developments in Language Theory, 10th International

Conference, DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings,

volume 4036 of Lecture Notes in Computer Science, pages 120–132. Springer.

[Černý, 1964] Černý, J. (1964). Poznámka k homogénnym experimentom s konečnými

automatmi. Matematicko-fyzikálny časopis, 14(3):208–216.

[Chistikov et al., 2019] Chistikov, D., Martyugin, P., and Shirmohammadi, M. (2019).

Synchronizing automata over nested words. Journal of Automata, Languages and

Combinatorics, 24(2-4):219–251.

[Cho and Huynh, 1991] Cho, S. and Huynh, D. T. (1991). Finite-automaton aperiodicity

is PSPACE-complete. Theoretical Computer Science, 88(1):99–116.

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of language.

IRE Transactions on Information Theory, 2(3):113–124.

[Cohen and Brzozowski, 1971] Cohen, R. S. and Brzozowski, J. A. (1971). Dot-depth of

star-free events. Journal of Computer and System Sciences, 5(1):1–16.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures. In

Harrison, M. A., Banerji, R. B., and Ullman, J. D., editors, Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights,

Ohio, USA, pages 151–158. ACM.

[de Bondt et al., 2019] de Bondt, M., Don, H., and Zantema, H. (2019). Lower bounds

for synchronizing word lengths in partial automata. International Journal of Founda-

tions of Computer Science, 30(1):29–60.

[de Oliveira Oliveira and Wehar, 2020] de Oliveira Oliveira, M. and Wehar, M. (2020).

On the fine grained complexity of finite automata non-emptiness of intersection. In

Jonoska, N. and Savchuk, D., editors, Developments in Language Theory - 24th In-

ternational Conference, DLT 2020, Tampa, FL, USA, May 11-15, 2020, Proceedings,

volume 12086 of Lecture Notes in Computer Science, pages 69–82. Springer.

BIBLIOGRAPHY 69

[de Roever et al., 1998] de Roever, W. P., Langmaack, H., and Pnueli, A., editors

(1998). Compositionality: The Significant Difference, International Symposium,

COMPOS’97, Bad Malente, Germany, September 8-12, 1997. Revised Lectures, vol-

ume 1536 of Lecture Notes in Computer Science. Springer.

[Downey and Fellows, 1999] Downey, R. G. and Fellows, M. R. (1999). Parameterized

Complexity. Monographs in Computer Science. Springer.

[Doyen et al., 2014] Doyen, L., Juhl, L., Larsen, K. G., Markey, N., and Shirmoham-

madi, M. (2014). Synchronizing words for weighted and timed automata. In Raman,

V. and Suresh, S. P., editors, 34th International Conference on Foundation of Software

Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014,

New Delhi, India, volume 29 of LIPIcs, pages 121–132. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik.

[Doyen et al., 2011] Doyen, L., Massart, T., and Shirmohammadi, M. (2011). Infinite

synchronizing words for probabilistic automata. In Murlak, F. and Sankowski, P.,

editors, Mathematical Foundations of Computer Science 2011 - 36th International

Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume

6907 of Lecture Notes in Computer Science, pages 278–289. Springer.

[Doyen et al., 2012] Doyen, L., Massart, T., and Shirmohammadi, M. (2012). Infinite

synchronizing words for probabilistic automata (erratum). CoRR, abs/1206.0995.

[Eppstein, 1990] Eppstein, D. (1990). Reset sequences for monotonic automata. SIAM

Journal on Computing, 19(3):500–510.

[Esparza et al., 2003] Esparza, J., Kucera, A., and Schwoon, S. (2003). Model checking

LTL with regular valuations for pushdown systems. Information and Computation,

186(2):355–376.

[Fernau, 2019] Fernau, H. (2019). Modern aspects of complexity within formal lan-

guages. In Mart́ın-Vide, C., Okhotin, A., and Shapira, D., editors, Language and

Automata Theory and Applications - 13th International Conference, LATA 2019, St.

Petersburg, Russia, March 26-29, 2019, Proceedings, volume 11417 of Lecture Notes

in Computer Science, pages 3–30. Springer.

[Fernau, 2021] Fernau, H. (2021). Some parameterized complexity results of natural

combinatorial problems in automata theory and algebra. Invited talk at University of

Bergen Oktober 1st, 2021.

[Fernau et al., 2019] Fernau, H., Gusev, V. V., Hoffmann, S., Holzer, M., Volkov, M. V.,

and Wolf, P. (2019). Computational complexity of synchronization under regular con-

straints. In Rossmanith, P., Heggernes, P., and Katoen, J., editors, 44th International

70 BIBLIOGRAPHY

Symposium on Mathematical Foundations of Computer Science, MFCS 2019, Au-

gust 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 63:1–63:14. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik.

[Fernau et al., 2015] Fernau, H., Heggernes, P., and Villanger, Y. (2015). A multi-

parameter analysis of hard problems on deterministic finite automata. Journal of

Computer and System Sciences, 81(4):747–765.

[Fernau and Krebs, 2017] Fernau, H. and Krebs, A. (2017). Problems on finite automata

and the exponential time hypothesis. Algorithms, 10(1):24.

[Fernau and Wolf, 2020] Fernau, H. and Wolf, P. (2020). Synchronization of determin-

istic visibly push-down automata. In Saxena, N. and Simon, S., editors, 40th IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer

Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa Cam-

pus, Goa, India (Virtual Conference), volume 182 of LIPIcs, pages 45:1–45:15. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik.

[Fernau et al., 2020] Fernau, H., Wolf, P., and Yamakami, T. (2020). Synchronizing

deterministic push-down automata can be really hard. In Esparza, J. and Král’,

D., editors, 45th International Symposium on Mathematical Foundations of Computer

Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of

LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Flum and Grohe, 2006] Flum, J. and Grohe, M. (2006). Parameterized Complexity The-

ory. Texts in Theoretical Computer Science. An EATCS Series. Springer.

[Gazdag et al., 2009] Gazdag, Z., Iván, S., and Nagy-György, J. (2009). Improved upper

bounds on synchronizing nondeterministic automata. Information Processing Letters,

109(17):986–990.

[Ginsburg and Spanier, 1966] Ginsburg, S. and Spanier, E. H. (1966). Finite-turn push-

down automata. SIAM Journal on Control, 4(3):429–453.

[Glaßer and Schmitz, 2000] Glaßer, C. and Schmitz, H. (2000). Decidable hierarchies of

starfree languages. In Kapoor, S. and Prasad, S., editors, Foundations of Software

Technology and Theoretical Computer Science, 20th Conference, FST TCS, volume

1974 of LNCS, pages 503–515. Springer.

[Glaßer and Schmitz, 2001] Glaßer, C. and Schmitz, H. (2001). Level 5/2 of the

Straubing-Thérien hierarchy for two-letter alphabets. In Kuich, W., Rozenberg, G.,

and Salomaa, A., editors, Developments in Language Theory, 5th International Con-

ference, DLT, volume 2295 of LNCS, pages 251–261. Springer.

BIBLIOGRAPHY 71

[Greibach, 1978] Greibach, S. A. (1978). Remarks on blind and partially blind one-way

multicounter machines. Theoretical Computer Science, 7:311–324.

[Gusev, 2012] Gusev, V. V. (2012). Synchronizing automata of bounded rank. In Mor-

eira, N. and Reis, R., editors, Implementation and Application of Automata - 17th

International Conference, CIAA, volume 7381 of LNCS, pages 171–179. Springer.

[Hahn et al., 2015] Hahn, M., Krebs, A., Lange, K., and Ludwig, M. (2015). Visibly

counter languages and the structure of NC1. In Italiano, G. F., Pighizzini, G., and

Sannella, D., editors, Mathematical Foundations of Computer Science 2015 - 40th

International Symposium, MFCS 2015, volume 9235 of Lecture Notes in Computer

Science, pages 384–394. Springer.

[Hoffmann, 2020a] Hoffmann, S. (2020a). Computational complexity of synchronization

under regular commutative constraints. In Kim, D., Uma, R. N., Cai, Z., and Lee,

D. H., editors, Computing and Combinatorics - 26th International Conference, CO-

COON 2020, Atlanta, GA, USA, August 29-31, 2020, Proceedings, volume 12273 of

Lecture Notes in Computer Science, pages 460–471. Springer.

[Hoffmann, 2020b] Hoffmann, S. (2020b). Constraint synchronization with two or three

state partial constraint automata. CoRR, abs/2005.05907.

[Hoffmann, 2020c] Hoffmann, S. (2020c). On A class of constrained synchronization

problems in NP. In Cordasco, G., Gargano, L., and Rescigno, A. A., editors, Pro-

ceedings of the 21st Italian Conference on Theoretical Computer Science, Ischia, Italy,

September 14-16, 2020, volume 2756 of CEUR Workshop Proceedings, pages 145–157.

CEUR-WS.org.

[Hoffmann, 2021a] Hoffmann, S. (2021a). Computational complexity of synchronization

under sparse regular constraints. In Bampis, E. and Pagourtzis, A., editors, Funda-

mentals of Computation Theory - 23rd International Symposium, FCT 2021, Athens,

Greece, September 12-15, 2021, Proceedings, volume 12867 of Lecture Notes in Com-

puter Science, pages 272–286. Springer.

[Hoffmann, 2021b] Hoffmann, S. (2021b). Constrained synchronization and subset syn-

chronization problems for weakly acyclic automata. In Moreira, N. and Reis, R., ed-

itors, Developments in Language Theory - 25th International Conference, DLT 2021,

Porto, Portugal, August 16-20, 2021, Proceedings, volume 12811 of Lecture Notes in

Computer Science, pages 204–216. Springer.

[Hoffmann, 2021c] Hoffmann, S. (2021c). Regularity conditions for iterated shuffle on

commutative regular languages. In Maneth, S., editor, Implementation and Applica-

tion of Automata - 25th International Conference, CIAA 2021, Virtual Event, July

72 BIBLIOGRAPHY

19-22, 2021, Proceedings, volume 12803 of Lecture Notes in Computer Science, pages

27–38. Springer.

[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to

Automata Theory, Languages and Computation. Addison-Wesley.

[IBM, 2021] IBM (2021). Quantum computing: tomorrow’s computing, today. https:

//www.ibm.com/quantum-computing/. accessed: 18.10.2021.

[III and Rosenkrantz, 1978] III, H. B. H. and Rosenkrantz, D. J. (1978). Computational

parallels between the regular and context-free languages. SIAM Journal on Comput-

ing, 7(1):99–114.

[Jaffe, 2006] Jaffe, A. M. (2006). The millennium grand challenge in mathematics. No-

tices of the AMS, 53(6):652–660.

[Jantzen and Kurganskyy, 2003] Jantzen, M. and Kurganskyy, A. (2003). Refining the

hierarchy of blind multicounter languages and twist-closed trios. Information and

Computation, 185(2):159–181.

[Jecker et al., 2020] Jecker, I., Kupferman, O., and Mazzocchi, N. (2020). Unary prime

languages. In Esparza, J. and Král, D., editors, 45th International Symposium on

Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020,

Prague, Czech Republic, volume 170 of LIPIcs, pages 51:1–51:12. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik.

[Jecker et al., 2021] Jecker, I., Mazzocchi, N., and Wolf, P. (2021). Decomposing per-

mutation automata. In Haddad, S. and Varacca, D., editors, 32nd International Con-

ference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Con-

ference, volume 203 of LIPIcs, pages 18:1–18:19. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik.

[Karakostas et al., 2003] Karakostas, G., Lipton, R. J., and Viglas, A. (2003). On the

complexity of intersecting finite state automata and NL versus NP. Theoretical Com-

puter Science, 302(1-3):257–274.

[Kasai and Iwata, 1985] Kasai, T. and Iwata, S. (1985). Gradually intractable prob-

lems and nondeterministic log-space lower bounds. Mathematical Systems Theory,

18(2):153–170.

[Klein and Zimmermann, 2016] Klein, F. and Zimmermann, M. (2016). How much

lookahead is needed to win infinite games? Logical Methods in Computer Science,

12(3).

https://www.ibm.com/quantum-computing/
https://www.ibm.com/quantum-computing/

BIBLIOGRAPHY 73

[Kĺıma and Polák, 2011] Kĺıma, O. and Polák, L. (2011). Subhierarchies of the second

level in the Straubing-Thérien hierarchy. International Journal of Algebra and Com-

putation, 21(7):1195–1215.

[Kohavi and Jha, 2009] Kohavi, Z. and Jha, N. K. (2009). Switching and Finite Au-

tomata Theory. Cambridge University Press, 3rd edition.

[Kozen, 1977] Kozen, D. (1977). Lower bounds for natural proof systems. In 18th An-

nual Symposium on Foundations of Computer Science, FOCS, pages 254–266. IEEE

Computer Society.

[Krebs et al., 2015a] Krebs, A., Lange, K., and Ludwig, M. (2015a). On distinguishing

NC1 and NL. In Potapov, I., editor, Developments in Language Theory - 19th Inter-

national Conference, DLT 2015, volume 9168 of Lecture Notes in Computer Science,

pages 340–351. Springer.

[Krebs et al., 2015b] Krebs, A., Lange, K., and Ludwig, M. (2015b). Visibly counter

languages and constant depth circuits. In Mayr, E. W. and Ollinger, N., editors,

32nd International Symposium on Theoretical Aspects of Computer Science, STACS

2015, volume 30 of LIPIcs, pages 594–607. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik.

[Krötzsch et al., 2017] Krötzsch, M., Masopust, T., and Thomazo, M. (2017). Complex-

ity of universality and related problems for partially ordered NFAs. Information and

Computation, 255:177–192.

[Kunc and Okhotin, 2013] Kunc, M. and Okhotin, A. (2013). Reversibility of computa-

tions in graph-walking automata. In Chatterjee, K. and Sgall, J., editors, Mathematical

Foundations of Computer Science 2013 - 38th International Symposium, MFCS 2013,

Klosterneuburg, Austria, August 26-30, 2013. Proceedings, volume 8087 of Lecture

Notes in Computer Science, pages 595–606. Springer.

[Kupferman and Mosheiff, 2015] Kupferman, O. and Mosheiff, J. (2015). Prime lan-

guages. Information and Computation, 240:90–107.

[Landauer, 1961] Landauer, R. (1961). Irreversibility and heat generation in the com-

puting process. IBM Journal of Research and Development, 5(3):183–191.

[Lange and Rossmanith, 1992] Lange, K. and Rossmanith, P. (1992). The emptiness

problem for intersections of regular languages. In Havel, I. M. and Koubek, V., editors,

Mathematical Foundations of Computer Science 1992, 17th International Symposium,

MFCS’92, Prague, Czechoslovakia, August 24-28, 1992, Proceedings, volume 629 of

Lecture Notes in Computer Science, pages 346–354. Springer.

74 BIBLIOGRAPHY

[Larsen et al., 2014] Larsen, K. G., Laursen, S., and Srba, J. (2014). Synchronizing

strategies under partial observability. In Baldan, P. and Gorla, D., editors, Concur-

rency Theory - 25th International Conference, CONCUR, volume 8704 of LNCS, pages

188–202. Springer.

[Latteux, 1977] Latteux, M. (1977). Produit dans le Cône Rationnel Engendré par D .

Theoretical Computer Science, 5(2):129–134.

[Ludwig, 2019] Ludwig, M. (2019). Tree-Structured Problems and Parallel Computation.

PhD thesis, University of Tübingen, Germany.

[Martyugin, 2009] Martyugin, P. (2009). Complexity of problems concerning reset words

for some partial cases of automata. Acta Cybernetica, 19(2):517–536.

[Martyugin, 2012] Martyugin, P. V. (2012). Synchronization of automata with one un-

defined or ambiguous transition. In Moreira, N. and Reis, R., editors, Implementation

and Application of Automata - 17th International Conference, CIAA 2012, Porto,

Portugal, July 17-20, 2012. Proceedings, volume 7381 of Lecture Notes in Computer

Science, pages 278–288. Springer.

[Martyugin, 2014] Martyugin, P. V. (2014). Computational complexity of certain prob-

lems related to carefully synchronizing words for partial automata and directing words

for nondeterministic automata. ACM Transactions on Computer Systems, 54(2):293–

304.

[Masopust, 2018] Masopust, T. (2018). Separability by piecewise testable languages is

PTime-complete. Theoretical Computer Science, 711:109–114.

[Masopust and Krötzsch, 2021] Masopust, T. and Krötzsch, M. (2021). Partially ordered

automata and piecewise testability. Logical Methods in Computer Science, 17(2).

[Masopust and Thomazo, 2015] Masopust, T. and Thomazo, M. (2015). On the com-

plexity of k-piecewise testability and the depth of automata. In Potapov, I., editor,

Developments in Language Theory - 19th International Conference, DLT 2015, Liver-

pool, UK, July 27-30, 2015, Proceedings, volume 9168 of Lecture Notes in Computer

Science, pages 364–376. Springer.

[Mehlhorn, 1980] Mehlhorn, K. (1980). Pebbling moutain ranges and its application

of DCFL-recognition. In de Bakker, J. W. and van Leeuwen, J., editors, Automata,

Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherlands,

July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in Computer Science, pages

422–435. Springer.

BIBLIOGRAPHY 75

[Mikami and Yamakami, 2020] Mikami, E. and Yamakami, T. (2020). Synchronizing

pushdown automata and reset words. An article appeared in Japanese as Technical

Report of The Institute of Electonics, Information and Communication Engineers,

COMP2019-54(2020-03), pp. 57–63.

[Myers and Urbat, 2021] Myers, R. S. R. and Urbat, H. (2021). Syntactic minimization

of nondeterministic finite automata. In Bonchi, F. and Puglisi, S. J., editors, 46th

International Symposium on Mathematical Foundations of Computer Science, MFCS

2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 78:1–78:16.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Myhill, 1957] Myhill, J. (1957). Finite automata and the representation of events.

WADD Technical Report, 57:112–137.

[Natarajan, 1986] Natarajan, B. K. (1986). An algorithmic approach to the automated

design of parts orienters. In 27th Annual Symposium on Foundations of Computer

Science, Toronto, Canada, 27-29 October 1986, pages 132–142. IEEE Computer So-

ciety.

[Nerode, 1958] Nerode, A. (1958). Linear automaton transformations. Proceedings of

the American Mathematical Society, 9(4):541–544.

[Netser, 2018] Netser, A. (2018). Decomposition of safe languages. Amirim Research

Project report from the Hebrew University.

[Nielsen and Chuang, 2002] Nielsen, M. A. and Chuang, I. (2002). Quantum computa-

tion and quantum information.

[Okhotin and Salomaa, 2014] Okhotin, A. and Salomaa, K. (2014). Complexity of input-

driven pushdown automata. SIGACT News, 45(2):47–67.

[Paperman, 2021] Paperman, C. (2021). Semigroup online. https://www.paperman.

name/semigroup/. accessed: 15.10.2021.

[Parikh, 1966] Parikh, R. (1966). On context-free languages. Journal of the ACM,

13(4):570–581.

[Pin, 1992] Pin, J. (1992). On reversible automata. In Simon, I., editor, LATIN ’92, 1st

Latin American Symposium on Theoretical Informatics, São Paulo, Brazil, April 6-10,

1992, Proceedings, volume 583 of Lecture Notes in Computer Science, pages 401–416.

Springer.

[Pin, 1998] Pin, J. (1998). Bridges for concatenation hierarchies. In Larsen, K. G.,

Skyum, S., and Winskel, G., editors, Automata, Languages and Programming, 25th

https://www.paperman.name/semigroup/
https://www.paperman.name/semigroup/

76 BIBLIOGRAPHY

International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceed-

ings, volume 1443 of Lecture Notes in Computer Science, pages 431–442. Springer.

[Place and Zeitoun, 2019] Place, T. and Zeitoun, M. (2019). Generic results for concate-

nation hierarchies. ACM Transactions on Computer Systems, 63(4):849–901.

[Rabin and Scott, 1959] Rabin, M. O. and Scott, D. S. (1959). Finite automata and

their decision problems. IBM Journal of Research and Development, 3(2):114–125.

[Rampersad and Shallit, 2010] Rampersad, N. and Shallit, J. (2010). Detecting pat-

terns in finite regular and context-free languages. Information Processing Letters,

110(3):108–112.

[Rozenberg and Salomaa, 1997] Rozenberg, G. and Salomaa, A., editors (1997). Hand-

book of Formal Languages, Volume 1: Word, Language, Grammar. Springer.

[Rystsov, 1980] Rystsov, I. K. (1980). On minimizing the length of synchronizing words

for finite automata. In Theory of Designing of Computing Systems, pages 75–82.

Institute of Cybernetics of Ukrainian Acad. Sci. (in Russian).

[Rystsov, 1983] Rystsov, I. K. (1983). Polynomial complete problems in automata the-

ory. Information Processing Letters, 16(3):147–151.

[Ryzhikov, 2019] Ryzhikov, A. (2019). Synchronization problems in automata without

non-trivial cycles. Theoretical Computer Science, 787:77–88.

[Sandberg, 2005] Sandberg, S. (2005). Homing and synchronizing sequences. In Broy,

M., Jonsson, B., Katoen, J., Leucker, M., and Pretschner, A., editors, Model-Based

Testing of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, pages 5–33.

Springer.

[Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and deter-

ministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192.

[Schöning, 1997] Schöning, U. (1997). Theoretische Informatik - kurzgefaßt, 3. Auflage.

Hochschultaschenbuch. Spektrum Akademischer Verlag.

[Schützenberger, 1965] Schützenberger, M. P. (1965). On finite monoids having only

trivial subgroups. Information and Control, 8(2):190–194.

[Schwentick et al., 2001] Schwentick, T., Thérien, D., and Vollmer, H. (2001). Partially-

ordered two-way automata: A new characterization of DA. In Kuich, W., Rozenberg,

G., and Salomaa, A., editors, Developments in Language Theory, 5th International

Conference, DLT, volume 2295 of LNCS, pages 239–250. Springer.

BIBLIOGRAPHY 77

[Shirmohammadi, 2014] Shirmohammadi, M. (2014). Qualitative Analysis of Synchro-

nizing Probabilistic Systems. (Analyse qualitative des systèmes probabilistes synchro-

nisants). PhD thesis, École normale supérieure de Cachan, France.

[Shitov, 2019] Shitov, Y. (2019). An improvement to a recent upper bound for synchro-

nizing words of finite automata. Journal of Automata, Languages and Combinatorics,

24(2-4):367–373.

[Srba, 2009] Srba, J. (2009). Beyond language equivalence on visibly pushdown au-

tomata. Logical Methods in Computer Science, 5(1).

[Starke, 1966] Starke, P. H. (1966). Eine Bemerkung über homogene Experimente. Elek-

tronische Informationsverarbeitung und Kybernetik (Journal of Information Processing

and Cybernetics), 2(4):257–259.

[Stockmeyer and Meyer, 1973] Stockmeyer, L. J. and Meyer, A. R. (1973). Word prob-

lems requiring exponential time: Preliminary report. In Aho, A. V., Borodin, A.,

Constable, R. L., Floyd, R. W., Harrison, M. A., Karp, R. M., and Strong, H. R.,

editors, 5th Annual Symposium on Theory of Computing, STOC, pages 1–9. ACM.

[Straubing, 1981] Straubing, H. (1981). A generalization of the Schützenberger product

of finite monoids. Theoretical Computer Science, 13:137–150.

[Straubing, 1985] Straubing, H. (1985). Finite semigroup varieties of the form V ∗D.

Journal of Pure and Applied Algebra, 36:53–94.

[Straubing, 1994] Straubing, H. (1994). Finite automata, formal logic, and circuit com-

plexity. Birkhauser Verlag.

[Swernofsky and Wehar, 2015] Swernofsky, J. and Wehar, M. (2015). On the complex-

ity of intersecting regular, context-free, and tree languages. In Halldórsson, M. M.,

Iwama, K., Kobayashi, N., and Speckmann, B., editors, Automata, Languages, and

Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-

10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science,

pages 414–426. Springer.

[Szyku la, 2018] Szyku la, M. (2018). Improving the upper bound on the length of the

shortest reset word. In Niedermeier, R. and Vallée, B., editors, 35th Symposium on

Theoretical Aspects of Computer Science, STACS, volume 96 of LIPIcs, pages 56:1–

56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Thérien, 1981] Thérien, D. (1981). Classification of finite monoids: the language ap-

proach. Theoretical Computer Science, 14(2):195–208.

78 BIBLIOGRAPHY

[Thierrin, 1968] Thierrin, G. (1968). Permutation automata. Mathematical Systems

Theory, 2(1):83–90.

[Truthe and Volkov, 2019] Truthe, B. and Volkov, M. V. (2019). Journal of Automata,

Languages and Combinatorics – Essays on the Černý Conjecture. https://www.jalc.

de/issues/2019/issue_24_2-4/content.html. Accessed: 10/1/2020.

[Türker and Yenigün, 2015] Türker, U. C. and Yenigün, H. (2015). Complexities of

some problems related to synchronizing, non-synchronizing and monotonic automata.

International Journal of Foundations of Computer Science, 26(1):99–122.

[Valiant, 1973] Valiant, L. G. (1973). Decision Procedures for Families of Deterministic

Pushdown Automata. PhD thesis, University of Warwick, Coventry, UK.

[Volkov, 2008] Volkov, M. V. (2008). Synchronizing automata and the Černý conjecture.

In Mart́ın-Vide, C., Otto, F., and Fernau, H., editors, Language and Automata Theory

and Applications, Second International Conference, LATA, volume 5196 of LNCS,

pages 11–27. Springer.

[Vorel and Roman, 2015] Vorel, V. and Roman, A. (2015). Parameterized complexity of

synchronization and road coloring. Discrete Mathematics and Theoretical Computer

Science, 17(1):283–306.

[Wareham, 2000] Wareham, T. (2000). The parameterized complexity of intersection

and composition operations on sets of finite-state automata. In Yu, S. and Paun, A.,

editors, Implementation and Application of Automata, 5th International Conference,

CIAA 2000, London, Ontario, Canada, July 24-25, 2000, Revised Papers, volume

2088 of Lecture Notes in Computer Science, pages 302–310. Springer.

[Wehar, 2014] Wehar, M. (2014). Hardness results for intersection non-emptiness. In

Esparza, J., Fraigniaud, P., Husfeldt, T., and Koutsoupias, E., editors, Automata,

Languages, and Programming - 41st International Colloquium, ICALP 2014, Copen-

hagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes

in Computer Science, pages 354–362. Springer.

[Wehar, 2017] Wehar, M. (2017). On the complexity of intersection non-emptiness prob-

lems. PhD thesis, State University of New York at Buffalo.

[Wolf, 2020] Wolf, P. (2020). Synchronization under dynamic constraints. In Saxena, N.

and Simon, S., editors, 40th IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020,

BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual Conference), volume 182

of LIPIcs, pages 58:1–58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

https://www.jalc.de/issues/2019/issue_24_2-4/content.html
https://www.jalc.de/issues/2019/issue_24_2-4/content.html

Chapter 6

Appendix of Part I

Results Concerning the Research Direction:

Completing Partial Automata to Synchronizing Au-

tomata

A complete DFA A is called synchronizing if there exists a word w ∈ Σ∗ such that

|δ(Q,w)| = 1. In this case we call w a synchronizing word for A. A partial DFA A is

called carefully synchronizing if there exists a word w ∈ Σ∗ such that δ(q, w) is defined

for all q ∈ Q and |δ(Q,w)| = 1. Here, we call w a carefully synchronizing word for A.

For some word w ∈ Σ∗ we call δ(Q,w) the set of active states (concerning w). If for

some state q every letter maps q to itself, we call q a trap-state.

Definition 60 (Sync-Into-Subset).

Given: DFA A = (Q,Σ, δ) and a subset S ⊆ Q.

Question: Is there a word w ∈ Σ∗ such that δ(Q,w) ⊆ S?

Definition 61 (State-Del-Car-Syn).

Given: DFA A = (Q,Σ, δ) and a number k ∈ N.

Question: Can we remove up to k states from A (with all its incident transitions) such

that the resulting automaton is carefully synchronizing?

Theorem 6. The problem State-Del-Car-Syn is PSPACE-complete.

Proof. We give a reduction from the PSPACE-complete problem Sync-Into-Subset.

The construction is depicted in Figure 6.1. Let A = (Q,Σ, δ) be a complete DFA and

S ⊆ Q. We construct from A a complete DFA A′ = (Q′,Σ′, δ′) with Σ′ := Σ ∪ {c, d}

80 Appendix of Part I

where {c, d} ∩ Σ = ∅. We start with Q′ := Q and δ′ := δ. For every state q ∈ Q\S
we create two new states qc and qd. We define δ′(qc, σ) := qc and δ′(qd, σ) := qd for all

σ ∈ Σ′. Further, we set δ′(q, c) := qc and δ′(q, d) := qd. We create two additional states

sc and sd and for all states q ∈ S we set δ′(q, c) := sc and δ′(q, d) := sd for all σ ∈ Σ′.

Finally, we set δ′(sd, σ) = δ′(sc, σ) := sc and k := 2|(Q\S)|

First, assume there exists a word w ∈ Σ∗ such that δ(Q,w) ⊆ S in the automaton A.

Then, we pick the 2|(Q\S)| states qc and qd with q ∈ Q\S for deletion. Let A′′ be the

resulting automaton. For all states in Q\S the transitions labeled with c and d are now

undefined in A′′. Note that sc is the only remaining trap state and that w is still defined

on all remaining states. Since δ′ agrees with δ on Q × Σ, the word w also brings all

states from Q into S in the automaton A′′. As for all states in S the transition c is still

defined, it is easy to see that the word wc is carefully synchronizing A′′ into the state sc.

For the other direction assume there exists a set of states D ⊆ Q′ with |D| ≤ k such

that removing the states in D and all incident transitions from A′ yields a partial DFA

A′′ which is carefully synchronized by some word w ∈ Σ′∗. The automaton A′′ contains

2|(Q\S)|+1 trap states and 2|(Q\S)|+2 states from which no state in Q can be reached.

In order to obtain a synchronizing automaton we need to remove at least all but one

trap states since otherwise two states which can not be synchronized would remain. The

threshold k forces us to keep one trap-state. If we choose one of the states qc or qd for

q ∈ Q\S as the remaining trap state, then either sc or sd will remain. If we delete sc

and keep sd the state sd will have no defined transition left and especially the remaining

other trap-state can not be reached from sd. If we delete sd and keep sc we would also

end up with two different trap states. Hence, we need to delete all 2|(Q\S)| states qc

and qd with q ∈ Q\S and keep the states sc and sd. Since sc is the only remaining trap

state it needs to be the synchronizing state and all states in Q must reach sc. The only

way to reach sc is to read either a letter c or d at some point. But the transitions c and

d are no longer defined on all states in Q\S. In order to read one of these letters in a

carefully synchronizing word w = w1cw2 or w′ = w1dw2 with w1 ∈ Σ∗, the subword w1

must already map all states into S. Hence, δ(Q,w1) ⊆ S and since δ′ agrees with δ, the

word w1 also maps all states in A into the set S.

The membership in PSPACE follows from the fact that we can guess which states we

delete (NPSPACE = PSPACE [Savitch, 1970]) and then test the resulting automaton for

careful synchronization in polynomial space [Martyugin, 2014].

Definition 62 (Trans-Add-Car-Syn).

Given: Partial DFA A = (Q,Σ, δ) and a number k ∈ N.

Question: Can we add up to k transitions to A labeled by letters in Σ ∪ {c} with c /∈ Σ

81

S

A
sc

sd

p

q

pc

pd

qc

qd

...
...

...

c

d

c

d

c
c
c

d
d
d

Σ′

Σ′

Σ′

Σ′

Σ′

Σ′

Figure 6.1: Schematic illustration of the reduction from Sync-Into-Subset to State-
Del-Car-Syn (see Theorem 6).

such that the resulting automaton A′ is a carefully synchronizing deterministic partial

semi-automaton?

Theorem 7. For every fixed k ∈ N, the problem k-Trans-Add-Car-Syn is PSPACE-

complete.

Proof. Let k ∈ N be fixed. Then, we give a reduction from the PSPACE-complete

problem Careful Synchronization [Martyugin, 2014]. Let A = (Q,Σ, δ) be a partial

DFA. We construct from A the partial DFA A′ = (Q ∪ {q1, q2, . . . , qk},Σ ∪ {c}, δ) with

Q ∩ {q1, q2, . . . , qk} = ∅ and c /∈ Σ. Note, that the transition function δ is completely

taken over from A and the newly added states q1, q2, . . . , qk have no defined transition.

Then, the instance A′, k is a yes-instance of Trans-Add-Car-Syn if and only if A is

carefully synchronizing.

First, assume A is carefully synchronizing by a carefully synchronizing word w ∈ Σ∗.

Then, there must be a letter a ∈ Σ for which δ(Q, a) is defined. Pick some state q ∈ Q
for which some state maps to q with the letter a. Adding the transitions δ(q1, a) =

δ(q2, a) = · · · = δ(qk, a) = q to A′ yields a deterministic partial semi-automaton which

is carefully synchronized by w.

For the other direction assume we can add up to k transitions to A′ such that the

resulting automaton is a carefully synchronizing deterministic partial semi-automaton.

Since the states q1, q2, . . . , qk cannot be reached from the states in Q, and are further no

trap-states, we must bring all of these states into Q by adding transitions. As there are k

pairwise not connected states q1, q2, . . . , qk we need all of the k transitions to bring them

into Q. As there are no transitions left to add between two states in Q, any carefully

82 Appendix of Part I

synchronizing word for the resulting automaton is also carefully synchronizing for A.

Membership in PSPACE follows from the fact, that we can guess the added transitions and

then test the resulting automaton for carefully synchronization in polynomial space.

Part II

Publications

Chapter 7

Computational Complexity of

Synchronization under Regular

Constraints

Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer, Mikhail V.

Volkov, and Petra Wolf.

An extended abstract appeared in the proceedings of MFCS 2019:

Leibniz International Proceedings in Informatics (LIPIcs) 138 (2019) pp. 63:1 – 63:14.

DOI: 10.4230/LIPIcs.MFCS.2019.63.

https://doi.org/10.4230/LIPIcs.MFCS.2019.63

86 Synchronization under Regular Constraints

Computational Complexity of Synchronization under
Regular Constraints

Henning Fernau1, Vladimir V. Gusev∗2, Stefan Hoffmann1,
Markus Holzer3, Mikhail V. Volkov†4, and Petra Wolf‡1

1Universität Trier, Germany
2University of Liverpool, UK

3Universität Gießen, Germany
4Ural Federal University, Yekaterinburg, Russia

Abstract

Many variations of synchronization of finite automata have been studied in
the previous decades. Here, we suggest studying the question if synchronizing
words exist that belong to some fixed constraint language, given by some partial
finite automaton called constraint automaton. We show that this synchronization
problem becomes PSPACE-complete even for some constraint automata with two
states and a ternary alphabet. In addition, we characterize constraint automata
with arbitrarily many states for which the constrained synchronization problem is
polynomial-time solvable. We classify the complexity of the constrained synchro-
nization problem for constraint automata with two states and two or three letters
completely and lift those results to larger classes of finite automata.

1 Introduction

Synchronization is an important concept for many applied areas: parallel and distributed
programming, system and protocol testing, information coding, robotics, etc. At least
∗The author was supported by Leverhulme Trust
†The author was supported by DFG-funded project FE560/9-1
‡The author was supported by DFG-funded project FE560/9-1

1

87

some aspects of synchronization are captured by the notion of a synchronizing automa-
ton; for instance, synchronizing automata adequately model situations in which one has
to direct a certain system to a particular state without a priori knowledge of its current
state. We only refer to some survey papers [Sandberg, 2005, Volkov, 2008], as well as
to Chapter 13 in [Kohavi and Jha, 2009], that also report on some of these applications.
An automaton is called synchronizing if there exists a word that brings it to a known
state independently of the starting state. This concept is quite natural and has been
investigated intensively in the last six decades. It is related to the arguably most famous
open combinatorial question in automata theory, formulated by Černý in [Černý, 1964].
The Černý conjecture states that every n-state synchronizing automaton can be synchro-
nized by a word of length smaller or equal (n− 1)2. Although this bound was proven for
several classes of finite-state automata, such as aperiodic automata [Trakhtman, 2007]
or automata with a transition monoid in a class called DS [Almeida et al., 2009], the
general case is still widely open. The currently best upper bound on this length is cubic,
and only very little progress has been made, basically improving on the multiplicative
constant factor in front of the cubic term, see [Shitov, 2019, Szykuła, 2018].

Due to the importance of this notion of synchronizing words, quite a large number of
generalizations and modifications have been considered in the literature. We only men-
tion four of these in the following. Instead of synchronizing the whole set of states, one
could be interested in synchronizing only a subset of states. This and related questions
were first considered by Rystsov in [Rystsov, 1983]. Instead of considering deterministic
finite automata (DFAs), one could alternatively study the notion of synchronizability
for nondeterministic finite automata [Gazdag et al., 2009, Martyugin, 2014]. The notion
of synchronizability naturally transfers to partially defined transition functions where
a synchronizing automata avoiding undefined transitions is called carefully synchroniz-
ing, see [de Bondt et al., 2019, Martyugin, 2009, Martyugin, 2014]. To capture more
adaptive variants of synchronizing words, synchronizing strategies have been introduced
in [Larsen et al., 2014]. Recall that the question of synchronizability (without length
bounds) is solvable in polynomial time for complete DFAs [Volkov, 2008]. However, in all
of the mentioned generalizations, this synchronizability question becomes even PSPACE-
complete. This general tendency can also be observed in the generalization that we
introduce in this paper, which we call regular constraints. These constraints are defined
by some (fixed) finite automaton describing a regular language R, and the question is,
given some DFA A, if A has some synchronizing word from R. This notion explicitly
appeared in [Gusev, 2012] as an auxiliary tool: it was shown that the synchronization
problem of every automaton A = (Σ, Q, δ) whose letters σ have ranks at most r, i.e.,
|δ(Q, σ)| ≤ r, is equivalent to the synchronization of an r-state automaton A′ under
some regular constraints.

2

88 Synchronization under Regular Constraints

The main research question that we look into is to understand for which regular con-
straints the question of synchronizability is solvable in polynomial time (as it is for
R = Σ∗), or for which it is hard. Furthermore, it would be interesting to see complexity
classes different from P and PSPACE to show up (depending on R). In our paper, we
give a complete description of the complexity status for constraints that can be described
by partial 2-state deterministic automata on alphabets with at most three letters. In
this case, indeed, we only observe P and PSPACE situations. However, we also find
3-state automata (on binary input alphabets) that exhibit an NP-complete synchroniza-
tion problem when considered as constraints. We describe several ways how to generalize
our results to larger constraint automata. Moreover, we identify several classes of con-
straint automata that imply feasible synchronization problems. We motivate our study
of synchronization under regular constraints by the following example.

A motivating result. In the theory of synchronizing automata, one normally allows the
directing instruction to be an arbitrary word over the input language of the correspond-
ing automaton. In reality, however, available commands might be subject to certain
restrictions; for instance, it is quite natural to assume that a directing instruction should
always start and end with a specific command that first switches the automaton to a
‘directive’ mode and then returns the automaton to its usual mode. In its simplest
form, the switching between ‘normal mode’ and ‘directive’ (synchronization) mode can
be modeled as ab∗a. This scenario produces an NP-complete synchronization problem.
In order to state our first result formally, we make use of some (standard) notions defined
in Section 2.

Proposition 1. The following problem is NP-complete: Given a deterministic finite
complete automaton A with L(A) ⊆ {a, b}∗, is there a synchronizing word w ∈ ab∗a

for A?

Notice that this contrasts with the complexity of the synchronizability question for com-
plete DFAs, which can be solved in quadratic time; see, e.g., [Sandberg, 2005, Volkov,
2008]. Also, it contrasts the complexity of synchronizability for partial DFAs, which is
PSPACE-complete; see [Martyugin, 2014].

The constraint automaton describing ab∗a has three states. As we will see below, only P-
and PSPACE-results can be observed for two-state constraint automata over binary and
ternary input alphabets. Hence, in a sense, Proposition 1 is a minimal example of a
complexity status inbetween P and PSPACE. A proof sketch of Proposition 1 is given
below.

Rystsov [Rystsov, 1983] considered a problem that he called Global Inclusion Prob-

lem for Non-initial Automata. As we will see below, this problem (together with

3

89

a variation) will be the key problem in our reductions. Looking at the proof of [Rystsov,
1983, Theorem 2.1], we can observe the following refined result. We consider the next
problem that we call PΣ for brevity. Given a complete DFA A with state set Q and
input alphabet Σ, with a ∈ Σ, as well as a designated state subset S, is there some
word w ∈ {a}(Σ \ {a})∗ such that w drives A into S, irrespectively of where A starts
processing w? Trivially, PΣ is in P if |Σ| = 1.

Theorem 1. PΣ is NP-hard if |Σ| = 2, and PSPACE-hard if |Σ| > 2.

In particular, the case distinction between binary input alphabets and larger input al-
phabets (concerning hardness results) comes from the fact that the reduction of Rystsov
uses DFA-Intersection Nonemptiness, the non-emptiness of intersection problem
for deterministic finite automata on the alphabet Σ \ {a}. According to Theorem 6.1 in
[Stockmeyer and Meyer, 1973] (more details in [Fernau and Krebs, 2017, Kozen, 1977])
this problem is NP-complete on unary alphabets. In Rystsov’s reduction, the state set
of the automaton A consists of a part Q∩, which just copies the n automata Ai (over
alphabet Σ \ {a}) of a DFA-Intersection Nonemptiness instance, together with n
new states ti ∈ Q→ that move on input a into the initial state si of Ai. Likewise, from
any state qi of Ai, letter a leads to si. All transitions not yet defined are self-loops. Set S
collects all final states of all Ai. Hence, a word w ∈ (Σ\{a})∗ is accepted by all of the Ai
iff aw drives A into S, starting out from any state. The promised proof sketch follows.
Modify A to obtain an automaton A′ such that A′ has a synchronizing word awa, with
w ∈ (Σ\{a})∗ iff aw drives A into S as follows: add a new state s where all letters loop;
for all q ∈ S, replace the a-transitions leading from q into si by a-transitions leading
into s. For more details (membership in NP for Σ = {a, b} is non-trivial), see Theorem 6.

2 Preliminaries and Definitions

Throughout the paper, we consider deterministic finite automata (DFAs). Recall that
a DFA A is a tuple A = (Σ, Q, δ, q0, F), where the alphabet Σ is a finite set of input
symbols, Q is the finite state set, with start state q0 ∈ Q, and final state set F ⊆ Q.
The transition function δ : Q×Σ→ Q extends to words from Σ∗ in the usual way. The
function δ can be further extended to sets of states in the following way. For every set
S ⊆ Q with S 6= ∅ and w ∈ Σ∗, we set δ(S,w) := { δ(q, w) | q ∈ S }. We sometimes refer
to the function δ as a relation and we identify a transition δ(q, σ) = q′ with the tuple
(q, σ, q′). We call A complete if δ is defined for every (q, a) ∈ Q×Σ; if δ is undefined for
some (q, a), the automaton A is called partial. If |Σ| = 1, we call A a unary automaton.
The set L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F } denotes the language accepted by A. A semi-

4

90 Synchronization under Regular Constraints

automaton is a finite automaton without a specified start state and with no specified
set of final states. Notice that (Σ,

(
Q
≤k
)
, δ) can be viewed as a semi-automaton for each

k ≤ |Q|, when
(
Q
≤k
)
is the set formed by all subsets of Q of cardinality at most k. The

properties of being deterministic, partial, and complete of semi-automata are defined
as for DFA. When the context is clear, we call both deterministic finite automata and
semi-automata simply automata. We call a deterministic complete semi-automaton a
DCSA and a partial deterministic finite automaton a PDFA for short. If we want to add
an explicit initial state r and an explicit set of final states S to a DCSA A or change
them in a DFA A, we use the notation Ar,S.

An automaton A is called synchronizing if there exists a word w ∈ Σ∗ with |δ(Q,w)| = 1.
In this case, we call w a synchronizing word for A. For a word w, we call a state in
δ(Q,w) an active state. We call a state q ∈ Q with δ(Q,w) = {q} for some w ∈ Σ∗

a synchronizing state. A state from which some final state is reachable is called co-
accessible. For a set S ⊆ Q, we say S is reachable from Q or Q is synchronizable to S if
there exists a word w ∈ Σ∗ such that δ(Q,w) = S. An automaton A is called returning,
if for every state q ∈ Q, there exists a word w ∈ Σ∗ such that δ(q, w) = q0, where q0 is
the start state of A.

Fact 1. [Volkov, 2008] For any DCSA, we can decide if it is synchronizing in polynomial
time O(|Σ||Q|2). Additionally, if we want to compute a synchronizing word w, then we
need time O(|Q|3 + |Q|2|Σ|)) and the length of w will be O(|Q|3).

The following obvious remark will be used frequently without further mentioning.

Lemma 1. Let A = (Σ, Q, δ) be a DCSA and w ∈ Σ∗ be a synchronizing word for A.
Then for every u, v ∈ Σ∗, the word uwv is also synchronizing for A.

For an automaton A over the alphabet Σ, we denote by AΣ′ for every Σ′ ⊂ Σ the
restriction of A to the alphabet Σ′. Automaton AΣ′ is obtained from A by deleting all
transitions with labels in Σ \ Σ′. We will identify A{σ} with Aσ for every σ ∈ Σ. For
a complete deterministic automaton Aσ, each connected component of Aσ consists of
exactly one cycle and some tails leading into the cycle (see Figure 1a). A cycle is a
sequence of states q1, q2, . . . , qk, for k ∈ N such that δ(qi, σ) = qi+1 and δ(qk, σ) = q1. In
particular, a cycle may consist of one single state only. The tails are only leading into
the cycle since A is deterministic. We call components of this form sun-structures as
illustrated in Figure 1a.

We call two automata A and A′ isomorphic if one automaton can be obtained from the
other one by renaming states and alphabet-symbols. Notice that the number of non-
isomorphic automata can be quite huge even for small number of states and alphabet

5

91

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ
σ

σ
σ

σ

σ σ

σ

σ

σ

σ

σσ
σ σ

σσ
σ

σ

σ

σ

σ

σ

(a) Unary automaton Aσ consisting of 3 sun-
structures.

Automaton notation (code)
[1 2 ‡ - 2]

PDFA

1start 2

a

b

b

(b) Automaton notation and PDFA
using its standard interpretation
(see Section 4).

Figure 1: Illustration of sun-structures and of the notation of PDFAs.

sizes; see [Bassino and Nicaud, 2007, Domaratzki et al., 2002, Harrison, 1965]. In order
to address the presented automata in a compact way, we introduce a short notation
motivated by [Almeida et al., 2007, Ananichev et al., 2013, Reis et al., 2009], where we
assume some order is given on the alphabet and on the state set. Each automaton is
denoted by a tuple of size |Q|·|Σ| where for each state the mapping of this state with each
alphabet symbol is listed. The states themselves are separated by ‡-signs. For example,
the first entry of the tuple denotes the transition of the first state under the first symbol
(and “-” for an undefined transition), while the second entry denotes the transition of
the first state by the second symbol, and so on. We will always assume the first state
in the ordering of the states to be the start state of the automaton. See Figure 1b for
an example. Final states are not part of this coding. We will further summarize notions
of automata by a set notation in the description of a transition. For instance, the tuple
[1 2 ‡ {-,2} -] denotes the set of automata [1 2 ‡ - -] and [1 2 ‡ 2 -].
Further, a star * in the tuple notation denotes all possible realizations of a transition.

For a fixed PDFA B = (Σ, P, µ, p0, F), we define the constrained synchronization problem:

Definition 1. L(B)-Constr-Sync

Input : DCSA A = (Σ, Q, δ).
Question: Is there a synchronizing word w for A with w ∈ L(B)?

The automaton B will be called the constraint automaton. If an automaton A is a yes-
instance of L(B)-Constr-Sync we call A synchronizing with respect to B. Occasionally,
we do not specify B and rather talk about L-Constr-Sync. We are going to inspect
the complexity of this problem for different (small) constraint automata. We assume
the reader to have some basic knowledge in computational complexity theory and formal
language theory, as contained, e.g., in [Hopcroft et al., 2001]. For instance, we make
use of regular expressions to describe languages. We also identify singleton sets with
its elements. We make use of complexity classes like P, NP, or PSPACE. At one point,

6

92 Synchronization under Regular Constraints

we also mention the parameterized complexity class XP. By ≤log
m we denote a logspace

many-one reduction. If for two problems L1, L2 it holds that L1 ≤log
m L2 and L2 ≤log

m L1,
then we write L1 ≡log

m L2.

For establishing some of our results, we need the following computational problems taken
from [Berlinkov et al., 2018], which are PSPACE-complete problems for at least binary
alphabets, also see [Rystsov, 1983, Sandberg, 2005].

Definition 2. Sync-From-Subset

Input : DCSA A = (Σ, Q, δ) and S ⊆ Q.
Question: Is there a word w with |δ(S,w)| = 1?

Definition 3. Sync-Into-Subset

Input : DCSA A = (Σ, Q, δ) and S ⊆ Q.
Question: Is there a word w with δ(Q,w) ⊆ S?

Remark 1. The terminology is not homogeneous in the literature. For instance, Sync-

Into-Subset has different names in [Berlinkov et al., 2018] and in [Rystsov, 1983].

3 Placing Constrained Problems Within Complexity

Classes

In this section we present several criteria for L which lead to the membership of L-
Constr-Sync in different complexity classes, starting by studying unary languages.

Lemma 2. Let A = ({σ}, Q, δ) be a unary synchronizing DCSA. For all i ≥ |Q| − 1, we
have δ(Q, σi) = δ(Q, σi+1). A shortest word w synchronizing S ⊆ Q obeys |w| ≤ |Q|− 1.

Proof. Since A is a unary DCSA, it consists of sun-structures; see Fig. 1a. Each sun-
structure of A consists of exactly one cycle and some tails leading into the cycle. There
exists a cycle in A, since A is complete. No transition is leading out of the cycle, since A
is deterministic and unary. Let n = |Q|. Then, for each q ∈ Q, the state δ(q, σn−1) is
part of a cycle. Hence, δ(Q, σn−1) = δ(Q, σn) = δ(Q, σn+j) for j ≥ 0.

If S contains states from several sun-structures of A, then there is no word w with
|δ(S,w)| = 1. Therefore, consider only the sun-structure containing S. Let c denote the
number of states in its cycle. For each state q ∈ Q, after at most |Q| − 1− c transitions,
we are in the cycle. Hence, for k ≥ |Q| − 1 − c we have δ(q, σk) = δ(q, σk+c). So for
k ≥ |Q| − 1, using the equation δ(S, σk) = δ(S, σk−c) iteratively gives our claim.

7

93

Corollary 1. If L(B) ⊆ {σ}∗ for a PDFA B, then L(B)-Constr-Sync ∈ P.

Proof. A synchronizing word for an DCSA A with respect to L can only contain σ’s.
Hence, A can be reduced to Aσ. According to Lemma 2 the length of a shortest synchro-
nizing word w for A is linearly bounded in the size of A. Extending w to a word in L(B)

only adds linearly in B many letters. Since B is constant, the number of candidates for
synchronizing words for A with respect to B is linearly bounded in A.

Theorem 2. If L is regular, then L-Constr-Sync is contained in PSPACE.

Proof. As L is regular, there is some DFA B accepting L. The NPSPACE-machine that
checks if the DCSA A = (Σ, Q, δ) has a synchronizing word w ∈ L guesses w letter-by-
letter and keeps track both of the set of active states of A and of the current state of B.
This information can be stored in linear space (in the size of A). As NPSPACE = PSPACE
by [Savitch, 1970], the claim follows.

We continue with 1-state constraint automata and unions of constraint languages.

Lemma 3. Let B = (Σ, P, µ, p0, F) be a PDFA. If L(B) = L(BΣ\{σ}) for some σ ∈ Σ,
then L(B)-Constr-Sync ≡log

m L(BΣ\{σ})-Constr-Sync.

Proof. Let A = (Σ, Q, δ) be a DCSA. Since every synchronizing word for A with respect
to B must not contain any σ-letter, A is synchronizing with respect to B if and only
if AΣ\{σ} is synchronizing with respect to BΣ\{σ}. The other reduction is simply the
identity.

Corollary 2. L(B)-Constr-Sync ∈ P for every one-state constraint automaton B.

Proof. Let A = (Σ, Q, δ) be a DCSA. We can reduce the alphabet Σ of B to Σ′ consisting
of those letters which actually appear in L(B) by using Lemma 3 repeatedly. Since B is
a one-state automaton, L(B′) is either empty or Σ′∗. The former case is trivial. For the
latter case, it is sufficient to test if AΣ′ is synchronizing at all.

Lemma 4. If L is a finite union of languages L1, L2, . . . , Ln such that for each 1 ≤ i ≤ n

the problem Li-Constr-Sync ∈ P, then L-Constr-Sync ∈ P.

Proof. Checking synchronizability of a DCSA A = (Σ, Q, δ) with respect to language L
can be done by checking synchronizability of A with respect to each Li. Since the
problem Li-Constr-Sync is decidable in polynomial time for each 1 ≤ i ≤ n, com-
puting

∨n
i=1A ∈ Li-Constr-Sync yields a polynomial-time algorithm for the problem

L-Constr-Sync.

8

94 Synchronization under Regular Constraints

Theorem 3. Let L ⊆ Σ∗. If { v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L } = Σ∗, then
L-Constr-Sync is solvable in polynomial time.

Proof. Let A = (Σ, Q, δ) be a DCSA. To decide if A has a synchronizing word from L,
simply test if A is synchronizing at all, confer Fact 1. Assume v ∈ Σ∗ is a synchronizing
word for A. By assumption, uvw ∈ L for some u,w ∈ Σ∗. Moreover, the word uvw also
synchronizes A.

With the same type of reasoning, one can show:

Theorem 4. Let L ⊆ L′ ⊆ Σ∗. If L′ ⊆ { v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L }, then
L-Constr-Sync ≡log

m L′-Constr-Sync.

Remark 2. Considering a PDFA B = (Σ, P, µ, p0, F), we conclude: (a) If B is complete
and each state is co-accessible, then L(B)-Constr-Sync ∈ P. (b) If P ′ is the set of
reachable states and if L(BP ′,F) = Σ∗, then L(B)-Constr-Sync ∈ P. (c) If p ∈ P is
co-accessible, then L(B)-Constr-Sync ≡log

m L(Bp0,F∪{p})-Constr-Sync.

In [Volkov, 2008], the unconstrained synchronization problem can be decided in poly-
nomial time by verifying that every pair of states can be synchronized. In essence, we
generalize this algorithm here for returning constraint automata.

Lemma 5. Let A = (Σ, Q, δ) be a DCSA. If the constraint automaton B = (Σ, P, µ, p0, F)

is returning, then A is synchronizing with respect to B if and only if for all q, q′ ∈ Q we
find w ∈ Σ∗ with µ(p0, w) = p0 such that δ(q, w) = δ(q′, w).

Proof. Let B be a returning automata. Assume A is synchronizing with respect to B.
Let u ∈ Σ∗ be a synchronizing word for A with u ∈ L(B). Therefore |δ(Q, u)| = 1 and
δ(q, u) = δ(q′, u) for every pair of states q, q′ ∈ Q. Assume δ(p0, u) = pf ∈ F . Since B
is returning, there exists a word v ∈ Σ∗ with δ(pf , v) = p0. Hence w = uv fulfills the
condition.

For the other direction, the reasoning is similar to the synchronization problem in the
unconstrained case. We start with Q and choose a pair q, q′ ∈ Q. By assumption,
there exists a word u ∈ Σ∗ with µ(p0, u) = p0 such that δ(q, u) = δ(q′, u) and hence
|δ(Q, u)| < |Q|. Since µ(p0, u) = p0, the constraint automaton is in the start state
after reading u and we can simply choose another pair of states in δ(Q, u) which we will
synchronize next until we end up with a single state. Note that we have to synchronize
at most |Q|−1 pairs. The concatenation of the synchronizing words for the chosen pairs
of states yields a word w with µ(p0, w) = p0. Let v ∈ L(B), then wv ∈ L(B) and wv is
a synchronizing word for A.

9

95

As we just have to check pairs of states we can devise a polynomial-time algorithm to
decide L(B)-Constr-Sync of a returning automaton B.

Theorem 5. If B = (Σ, P, µ, p0, F) is returning, then L(B)-Constr-Sync ∈ P.

Proof. Let A = (Σ, Q, δ) be an DCSA with n = |Q|. Let m = |P |. From A, we
construct the DCSA A≤2 = (Σ,

(
Q
≤2

)
, δ′). Then, for each two-element set {q1, q2} ∈

(
Q
≤2

)
,

define A′ = A≤2
{q1,q2},Q, identifying Q with all 1-element state sets. We check for each

two-element set {q1, q2} ∈
(
Q
≤2

)
if L(A′) ∩ L(Bp0,{p0}) 6= ∅. By Lemma 5, the DCSA A

is synchronizing with respect to B if and only if each intersection is non-empty. Each
of the

(
n
2

)
intersections can be checked by using the product-automaton construction in

time O
(
(n+

(
n
2

)
)m
)
.

Our considerations can be turned into a polynomial-time algorithm for computing a
synchronizing word for A with respect to B, which implies the following result.

Corollary 3. If the constraint automaton B is returning, a shortest synchronizing word
with respect to B is polynomially bounded in the size of the input automaton.

With the next theorem we generalize our introductory example of ab∗a as a constraint
language. We show that if all cycles in the constraint automaton are labeled with words
from a single unary language, then the Constr-Sync problem is solvable in NP.

Theorem 6. Let B = (Σ, P, µ, p0, F) be a PDFA. Then, L(B)-Constr-Sync ∈ NP if
there is a σ ∈ Σ such that for all states p ∈ P , it holds that if L(Bp,{p}) is infinite, then
L(Bp,{p}) ⊆ {σ}∗.

Proof. By assumption, the letters in Σ \ {σ} do not appear in any pumpable substring.
Hence, their number in a word in L(B) is bounded by |P | = m. Therefore, any word
w ∈ L(B) can be partitioned into at most 2m − 1 substrings w = u1v1 . . . um−1vm−1um

with ui ∈ {σ}∗ and vi ∈ (Σ \ {σ})∗ for all i ≤ m. Note that |vi| ≤ m− 1, for all i < m.
Let A = (Σ, Q, δ) be a yes-instance of L(B)-Constr-Sync with |Q| = n. Let k be the
number of sun-structures in Aσ. Let w ∈ L(B) be a synchronizing word for A partitioned
as mentioned above.

Claim 1: If for some i ≤ m, |ui| > (mn)k + n, then we can replace ui by some u′i ∈ {σ}∗
with |u′i| ≤ (mn)k + n, yielding a word w′ ∈ L(B) that synchronizes A.

Proof of Claim 1: Since ui ∈ {σ}∗, the automaton A acts like Aσ on ui. For each ui, after
at most n σ-transitions, every active state q in A (i.e., q ∈ δ(Q, u1v1 . . . vi−1σ

n)) reached
some cycle. After at most n further σ-transitions, each active state in A will have been

10

96 Synchronization under Regular Constraints

through some cycle at least once and has been back to its original position in the cycle
at least once. The size of the cycle in B which is repeated in ui might cause A to skip
some states in the cycle. Therefore, we need to multiply the length of a considered cycle
in A with the length of the biggest cycle in B, trivially upper-bounded by m, in order to
get an upper bound on the number of σ’s needed to reach every combination of active
states in one sun-structure of A. To get all possible combinations of active states over all
sun-structures, we must multiply this expression for each sun-structure, yielding a total
upper bound on the number of σ-transitions and hence the size of any ui of (mn)k + n

when avoiding cycles in configuration sequences. Therefore, each ui can be replaced by
an u′i with |u′i| ≤ (mn)k + n, yielding a synchronizing word for A, as well. C

We will now show that we can decide whether A is synchronizing with respect to B
in polynomial time using nondeterminism despite the fact that an actual synchronizing
word might be exponentially large. This problem is circumvented by some preprocessing
based on modulo arithmetics. This allows us to guess a binary representation bin(ui)

of |ui| instead of ui itself. Hence, we guess wbin = bin(u1)v1 . . . bin(um−1)vm−1 bin(um).
Since all ui are single exponential in size, the length of wbin is polynomially bounded in
the size of A.

Claim 2: For each q ∈ Q, one can compute in polynomial time numbers `(q), τ(q) ≤ n

such that, given some number x in binary, based on `(q), τ(q), one can compute in
polynomial time a number y ≤ n such that δ(q, σx) = δ(q, σy).

Proof of Claim 2: For each state q ∈ Q, we calculate its σ-orbit Orbσ(q), that is, the
set Orbσ(q) = {q, δ(q, σ), δ(q, σ2), . . . , δ(q, στ), δ(q, στ+1), . . . , δ(q, στ+`−1)} such that all
states in Orbσ(q) are distinct but δ(q, στ+`) = δ(q, στ). Let τ(q) := τ and `(q) := ` be
the lengths of the tail and the cycle, respectively; these are nonnegative integers that
do not exceed n. Observe that Orbσ(q) includes the cycle {δ(q, στ), . . . , δ(q, στ+`−1)}.
We can use this information to calculate δ(q, σx), given a nonnegative integer x and a
state q ∈ Q, as follows: (a) If x ≤ τ(q), we can find δ(q, σx) ∈ Orbσ(q). (b) If x > τ(q),
then δ(q, σx) lies on the cycle of the sun-structure. Compute y := τ(q) + (x − τ(q))

(mod `(q)). Clearly, δ(q, σx) = δ(q, σy) ∈ Orbσ(q). The crucial observation is that this
computation can be done in time polynomial in |Q| and in | bin(x)| using a square-and-
multiply approach. C

As a consequence, given S ⊆ Q and x ≥ 0 (in binary), we can compute δ(S, σx) in
polynomial time. As B is even fixed, we can do a similar preprocessing also for B in
polynomial time.

The NP-machine guesses wbin part-by-part, keeping track of the set S of active states of A
and of the current state p of B. Initially, S = Q and p = p0. When guessing the number

11

97

xi = |ui| in binary, by Claim 1 we guess log(|ui|) ≤ log((mn)k + n) ∈ O(n log n) many
bits. By Claim 2, we can update S := δ(S, σxi) and p := µ(p, σxi) in polynomial time.
After guessing vi, we can simply update S := δ(S, vi) and p := µ(p, vi) by simulating
this input, as |vi| ≤ m = |P |, which is a constant in our setting. Finally, check if |S| = 1

and if p ∈ F .

Let b(n, k) be the number of bits guessed by our NP-algorithm. Observe that b(n, k) ∈
O((k + 1) log(nm)) with b(n, k) ≤ m2 log(|Σ|) + (m− 1)(k + 1)(log(m) + log(n)). As m
and |Σ| are constants and as n, k < n depend on A, we can determinize this algorithm
by testing b(n, k) many bits.

Corollary 4. Under the assumptions of Theorem 6, L(B)-Constr-Sync is in XP with
parameter k counting the number of sun-structures in Aσ for an input DCSA A.

When k = 1, we face a one-cluster automaton, see [Béal et al., 2011]. Ideas how to
further reduce the amount of nondeterminism by using more algebraic tools are described
in Appendix A.

After these more general thoughts, we now focus on two-state constraint automata B,
giving a complete picture of the complexity of L(B)-Constr-Sync over alphabets Σ

with |Σ| ≤ 3.

4 Constraint Automata with Two States and Two or

Three Letters

In the following we will give a complete classification of the complexity of L(B)-Constr-

Sync for two-state constraint automata B over a binary and a ternary alphabet. The
number of two-state PDFAs is already quite high. We explain why we need to consider
only one automaton for each automaton code listed in Tables 1 and 3. Here, we consider 1

as the start state and {2} as the set of final states and call this the standard interpretation
of a code.

Lemma 6. Let B = (Σ, P, µ) be some partial deterministic semi-automaton with two
states, i.e., P = {1, 2}. Then, for each p0 ∈ P and each F ⊆ P , we either have
L(Bp0,F)-Constr-Sync ∈ P, or L(Bp0,F)-Constr-Sync ≡log

m L(B′)-Constr-Sync

for a PDFA B′ = (Σ, P ′, µ′, 1, {2}).

Proof. We can clearly exclude the trivial case F = ∅. If p0 = 2, then we can easily change
the roles of states 1 and 2 in our discussions, i.e., we find an isomorphic automaton

12

98 Synchronization under Regular Constraints

that is taken care of. Therefore, we can assume p0 = 1. If F = {1}, then two cases
may arise. (1) Either the automaton Bp0,F is returning if there exists some transition
form state 1 to 2 and vice versa, in which case L(Bp0,F)-Constr-Sync ∈ P according
to Theorem 5. (2) Or Bp0,F is equivalent to a partial one state automaton which is
captured by Corollary 2. If F = {1, 2}, additionally a third case can appear. (3) There
is a transition from state 1 to 2 but no transition from state 2 to 1. In this case the
accepted language equals the set of prefixes of L(B1,{2}), which is a case captured by
Theorem 4.

Hence, we only need to specify B = (Σ, {1, 2}, µ) in the following without start and
final state. Let Σij := { a ∈ Σ | µ(i, a) = j } for 1 ≤ i, j ≤ 2. As B is deterministic,
Σi1 ∩ Σi2 = ∅. Consider easy cases first.

Proposition 2. If one of the following conditions hold, then L(B1,{2})-Constr-Sync

is in P: (1) Σ1,2 = ∅, (2) Σ2,1 6= ∅, (3) Σ1,1 ∪ Σ1,2 ⊆ Σ2,2, or (4) Σ1,1 ∪ Σ2,2 = ∅.

Proof. (1) If Σ1,2 = ∅ means L(B1,{2}) = ∅. (2) If Σ2,1 6= ∅, then B is returning (Theo-
rem 5). (3) Lemma 3 and Theorem 3 cover this case. (4) Now, L(B1,{2}) is finite.

For B = (Σ, {1, 2}, µ) and x ∈ Σ1,2, let Bx denote the variation with transition function µx

defined by µx = µ∩ ({ (p, y, p) | p ∈ {1, 2}, y ∈ Σ }∪{(1, x, 2)}). Then Lemma 4 implies:

Lemma 7. If L(Bx1,{2})-Constr-Sync ∈ P for each x ∈ Σ1,2 and if Σ2,1 = ∅, then
L(B1,{2})-Constr-Sync ∈ P.

Lemma 7 gives some final arguments why we only study the standard interpretation.

For 2-state constraint automata with alphabet Σ = {a, b}, in order to avoid isomorphic
automata and by Proposition 2, we can assume that either (1) a ∈ Σ1,1 and b ∈ Σ1,2 and
|Σ2,2| ≤ 1 or (2) a ∈ Σ1,2 but b /∈ Σ1,1 and |Σ2,2| > 0. See Table 1.

The constrained synchronization problem for constraint automata with a binary alpha-
bet is not easy in general, as we have seen already in Proposition 1 for 3-state con-
straint PDFA.

Theorem 7. For any two-state binary PDFA B, L(B)-Constr-Sync ∈ P.

Proof. By Table 1, we only need to show the claim for B1 = [1 2 ‡ 2 -], B2 =

[1 2 ‡ - 2], B3 = [1 2 ‡ - -], B4 = [- 2 ‡ 2 -], and B5 = [2 2 ‡ 2 -].
Let A = (Σ, Q, δ) be a DCSA with n := |Q|−1. Consider the first PDFA B1 with L(B1) =

13

99

Automaton code Why in P?
[* 2 ‡ 1 *] a ∈ Σ2,1 Propos. 2, (2)
[* 2 ‡ * 1] b ∈ Σ2,1 Propos. 2, (2)
[* 2 ‡ 2 2] Σ1,1 ∪ Σ1,2 = Σ2,2

Propos. 2, (3)

[1 2 ‡ {-,2} -] Theorem 7
[1 2 ‡ - 2] Theorem 7

Automaton code Why in P?
[2 2 ‡ 2 -] Theorem 7
[2 2 ‡ - 2] Isomorphic to [2 2 ‡ 2 -]

[{2,-} 2 ‡ - -] Σ1,1 ∪ Σ2,2 = ∅
Propos. 2, (4)

[- 2 ‡ 2 -] Theorem 7
[- 2 ‡ - 2] Σ1,1 ∪ Σ1,2 = Σ2,2 Propos. 2, (3)

Table 1: List of all PDFAs with two states and a binary alphabet, with Σ1,2 = {a, b} or
Σ1,2 = {b}.

a∗ba∗. Let a`bam be some synchronizing word for A, then by Lemma 2, applied to Aa,
we have δ(Q, a`) = δ(Q, aj) for some j ≤ n, and moreover, by a similar argument, we
find k ≤ n with δ(δ(Q, ajb), am) = δ(δ(Q, ajb), ak). So, the word ajbak is synchronizing
and according to Lemma 1 the word anban is also synchronizing. In order to decide
synchronizability with respect to B1, we simply have to check this last word. With the
same argument, for B2 we only have to test the word anbn, for B3 the word anb, and
for B4 the word ban. As B5 accepts the union of L(B4) and a unary regular language,
the claim follows with Corollary 1 and Lemma 4.

Next, we give a full classification on the complexity of the constrained synchroniza-
tion problem for constraint automata with two states and a ternary alphabet. As can
be verified by a case-by-case analysis, inspecting Table 2, the only automaton with a
constrained synchronization problem in P not covered by the generalization results in
Section 3 is [1 2 - ‡ - - 2].

Theorem 8. Let B = [1 2 - ‡ - - 2]. Then L(B)-Constr-Sync is in P.

Proof. The language accepted by the constraint automaton B = [1 2 - ‡ - - 2] is
a∗bc∗. Let A = (Σ, Q, δ) be a DCSA, n = |Q|. By arguments along the lines of the proof
of Theorem 7, one can show that there is a synchronizing word for A with respect to B
if and only if anbcn synchronizes A. This condition is easy to check.

The leftover two-state automata over a ternary alphabet are listed in Table 3. For all
of them the corresponding constrained synchronization problem is PSPACE-complete
(see Theorem 9). We want to point out that there is no constraint automata with two
states and a ternary alphabet for which the L(B)-Constr-Sync is not either PSPACE-
complete or contained in P, as we covered all possible automata of this kind.

Theorem 9. For each constraint automaton B in Table 3 the problem L(B)-Constr-

Sync is PSPACE-hard.

14

100 Synchronization under Regular Constraints

Automaton code Complexity Explanation

[* * * ‡ 1 * *] P Σ2,1 6= ∅ Propos. 2, (2)
[* * * ‡ * 1 *] P Σ2,1 6= ∅ Propos. 2, (2)
[* * * ‡ * * 1] P Σ2,1 6= ∅ Propos. 2, (2)
[* * * ‡ 2 2 2] P Σ1,1 ∪ Σ1,2 ⊆ Σ2,2 Propos. 2, (3)

[{-,1} {-,1} {-,1} ‡ * * *] P Σ1,2 = ∅ Propos. 2, (1)

[1 1 2 ‡ - - -] PSPACE-complete Theorem 9 Case 2
[1 1 2 ‡ 2 - -] PSPACE-complete Theorem 9 Case 2
[1 1 2 ‡ - 2 -] PSPACE-complete Isomorphic to [1 1 2 ‡ 2 - -]
[1 1 2 ‡ - - 2] PSPACE-complete Theorem 9 Case 2
[1 1 2 ‡ 2 2 -] PSPACE-complete Theorem 9 Case 2
[1 1 2 ‡ - 2 2] PSPACE-complete Theorem 9 Case 4
[1 1 2 ‡ 2 - 2] PSPACE-complete Isomorphic to [1 1 2 ‡ - 2 2]

[1 2 2 ‡ - - -] P Lemma 7
[1 2 2 ‡ 2 - -] P Lemma 7
[1 2 2 ‡ - 2 -] P Lemma 7
[1 2 2 ‡ - - 2] P Lemma 7
[1 2 2 ‡ 2 2 -] PSPACE-complete Theorem 9 Case 3
[1 2 2 ‡ - 2 2] PSPACE-complete Theorem 9 Case 4
[1 2 2 ‡ 2 - 2] PSPACE-complete Isomorphic to [1 2 2 ‡ 2 2 -]

[2 2 2 ‡ - - -] P Σ1,2 = ∅ Propos. 2,(1)
[2 2 2 ‡ 2 - -] P Lemma 7
[2 2 2 ‡ - 2 -] P Lemma 7
[2 2 2 ‡ - - 2] P Lemma 7
[2 2 2 ‡ 2 2 -] PSPACE-complete Theorem 9 Case 1
[2 2 2 ‡ - 2 2] PSPACE-complete Isomorphic to [2 2 2 ‡ 2 2 -]
[2 2 2 ‡ 2 - 2] PSPACE-complete Isomorphic to [2 2 2 ‡ 2 2 -]

[1 2 - ‡ - - -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[1 2 - ‡ 2 - -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[1 2 - ‡ - 2 -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[1 2 - ‡ - - 2] P Theorem 8
[1 2 - ‡ 2 2 -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[1 2 - ‡ - 2 2] PSPACE-complete Theorem 9 Case 4
[1 2 - ‡ 2 - 2] PSPACE-complete Theorem 9 Case 3

[2 2 - ‡ - - -] P Lemma 7
[2 2 - ‡ 2 - -] P Lemma 7
[2 2 - ‡ - 2 -] P Lemma 7
[2 2 - ‡ - - 2] P Lemma 7
[2 2 - ‡ 2 2 -] P Lemma 7
[2 2 - ‡ - 2 2] PSPACE-complete Isomorphic to [2 2 - ‡ 2 - 2]
[2 2 - ‡ 2 - 2] PSPACE-complete Theorem 9 Case 1

[2 - - ‡ - - -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[2 - - ‡ 2 - -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[2 - - ‡ - 2 -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[2 - - ‡ - - 2] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[2 - - ‡ 2 2 -] P |⋃1≤i,j≤2 Σij | ≤ 2, Lemma 3
[2 - - ‡ - 2 2] PSPACE-complete Theorem 9 Case 1

Table 2: List of all PDFAs with two states and a ternary alphabet together with the com-
plexity of the corresponding constrained synchronization problem and the explanation
thereof.

15

101

Case Automaton code Language
1 [2 - - ‡ - 2 2] a(b+ c)∗

[2 2 2 ‡ 2 2 -] (a+ b+ c)(a+ b)∗

[2 2 - ‡ 2 - 2] (a+ b)(a+ c)∗

2 [1 1 2 ‡ - - -] (a+ b)∗c
[1 1 2 ‡ 2 - -] (a+ b)∗ca∗

[1 1 2 ‡ 2 2 -] (a+ b)∗c(a+ b)∗

[1 1 2 ‡ - - 2] (a+ b)∗cc∗

3 [1 2 - ‡ 2 - 2] a∗b(a+ c)∗

[1 2 2 ‡ 2 2 -] a∗(b+ c)(a+ b)∗

4 [1 2 - ‡ - 2 2] a∗b(b+ c)∗

[1 1 2 ‡ - 2 2] (a+ b)∗c(b+ c)∗

[1 2 2 ‡ - 2 2] a∗(b+ c)(b+ c)∗

Table 3: Constraint automata (2 states, 3 letters) with a PSPACE-hard Constr-Sync
problem.

Proof. We prove each case separately by giving an explicit reduction for one of the au-
tomata, the statement for the other automata of that case follows by the same argument.
Our reductions are illustrated in Figure 2. Each reduction is starting out from (A, S),
with A = (Σ, Q, δ) being a DCSA and S ⊆ Q. Depending on the considered case, (A, S)

is either an instance of Sync-From-Subset, or of Sync-Into-Subset, respectively.
We construct from A a DCSA A′ = (Σ′, Q′, δ′), with Σ′ = Σ ∪ {σ} for an appropriately
chosen letter σ /∈ Σ, such that there exists w ∈ Σ∗ with |δ(S,w)| = 1, or δ(Q,w) ⊆ S,
respectively, if and only if A′ is synchronizing with respect to B. This construction is
described and illustrated in Figure 2.

Case 1: Consider the first automaton B = [2 - - ‡ - 2 2]. Then, L(B) = a(b+c)∗.
We reduce from the PSPACE-complete problem Sync-From-Subset for the binary
alphabet Σ = {b, c}. Since the constraint automaton forces us to read an a as the first
letter, we start synchronizing A′ with δ′(Q, a) = S. After the first a, we are allowed
to read any letter from Σ. Hence, if |δ(S,w)| = 1 by a word w ∈ Σ∗, then aw ∈ L(B)

synchronizes A′. Conversely, if there exists a word v that synchronizes A′ with respect
to B, then v must be of the form v = au with u ∈ {b, c}∗. By the definition of δ′, we
have |δ(S, u)| = 1.

The PSPACE-hardness of constrained synchronization with respect to the PDFA [2 2 2

‡ 2 2 -] with the language (a + b + c)(a + b)∗ follows with the same reduction with
the letters a and c interchanged. The same idea applies to [2 2 - ‡ 2 - 2].

16

102 Synchronization under Regular Constraints

Sync-From-Subset (Case 1)

t

a
a a

a

a
a

p

c

A

S
δ′(q, a) :=

{
q if q ∈ S
t otherwise.

δ′(q, b) := δ(q, b)

δ′(q, c) := δ(q, c)

Sync-Into-Subset (Case 2)

p

c

c c

c c
c

c

A

S

δ′(q, a) :=

{
p if q = p,

δ(q, a) otherwise.

δ′(q, b) :=

{
p if q = p,

δ(q, b) otherwise.

δ′(q, c) :=

{
p if q ∈ S ∪ {p}
q otherwise.

Sync-From-Subset (Case 3)

t

t′

b

a, c

b
b b

b

a, c a, c

b
b

b b

A
S

S ′

δ′(p, a) :=

{
δ(p, a) if p ∈ Q
p if p ∈ S ′

δ′(p, b) :=

t if p ∈ Q \ S
p if p ∈ S
q if p ∈ S ′ and p = q′

,

δ′(p, c) :=

{
δ(p, c) if p ∈ Q
p if p ∈ S ′

Sync-From-Subset (Case 4)

t

r

a

a
a

b
a

a
a

b
b

b

a, c

a, c a, c a, c

A S

S ′

δ′(p, a) :=

r if p ∈ (Q \ S) ∪ {r}
p′ if p ∈ S
p if p ∈ S ′

δ′(p, b) :=

δ(p, b) if p ∈ Q
t if p = r

q if p ∈ S ′ and p = q′

δ′(p, c) :=

δ(p, c) if p ∈ Q
r if p = r

p if p ∈ S ′

Figure 2: Schematic illustration of our reductions. Transitions inherited from A are not
shown.

17

103

Case 2: The language accepted by B = [1 1 2 ‡ - - -] is L(B) = (a + b)∗c. We
reduce from Sync-Into-Subset. Note that by construction if A′ is synchronizing, p
must be the unique synchronization state. The state p can only be reached by a transition
with the letter c, but the constraint automaton only allows us to read one single c as
the last letter of the synchronizing word. Hence, if there exists a synchronizing word w
for A′ with respect to B, it is of the form uc with u ∈ {a, b}∗. Since δ′(Q,w) = p,
δ′(Q, u) ⊆ { q ∈ Q | δ′(q, c) = p }; by definition of δ′, this equals the set S ∪ {p}. Hence,
u synchronizes the automaton A into a subset of S. Conversely, if w is a word that
synchronizes A to a subset of S, by the construction of δ′, the word wc synchronizes A′

to {p} and since w ∈ {a, b}∗, wc ∈ L(B).

We can only reach the synchronizing state by reading the letter c and for each automaton
of this case we are only allowed to read one single letter c. Therefore, allowing additional
letters a and b in the synchronizing word after reading the letter c does not change
the synchronizability of A′ and hence the same construction works for the constraint
automata [1 1 2 ‡ 2 - -] and [1 1 2 ‡ 2 2 -]. The same holds if we allow
only additional letters c (and no a or b) after the first c. In A′, c only leads in the
synchronization state from states in S and is the identity on other states. Therefore,
δ(q, cc) = δ(q, c) for any state q and the construction of Case 2 also works for the
constraint automaton [1 1 2 ‡ - - 2].

Case 3: The language accepted by B = [1 2 - ‡ 2 - 2] is L(B) = a∗b(a + c)∗.
We reduce from Sync-From-Subset for Σ = {a, c} similar to the one in Case 1, but
we have to ensure that the whole set S is active after reading the letter b, since a
preceding a might already merge some states in S. The idea is to add for each state
q ∈ S a new state q′ for which we stay in q′ with the letters a, c and go to q with the
letter b. Therefore, we ensure that δ(Q, aib) = S for every integer i. Since, starting from
the whole state set, A′ is precisely in the state set S after the first and only b letter,
the rest of the argument follows as in Case 1. For the constraint automaton [1 2 2

‡ 2 2 -], accepting the language a∗(b+ c)(a+ b)∗, the same idea applies.

Case 4: The language accepted by B = [1 2 - ‡ - 2 2] is L(B) = a∗b(b+c)∗. Here,
we do not have a special letter which appears exactly once in a word from L(B). We
will use the optional a letters in order to jump into S, since a word from L(B) that does
not contain any a must synchronize the whole state set and therefore also the subset S.
We reduce from the problem Sync-From-Subset for the alphabet Σ = {b, c}. We
decompose the state set Q with the letter a in S and Q \ S. The states in S are stored
in an annotated copy S ′ of S. The other states are gathered up in a new state r. With
the first b, we restore the set S as the set of active states. As we stored the states in S
in the set S ′ before, we ensure that the first letter b (after a letter a) does not cause any

18

104 Synchronization under Regular Constraints

transition in the initial automaton A which could already map an active state outside
of S. The remainder of a synchronizing word then synchronizes S.

If the set S in A is synchronizable to a single state by a word u ∈ {b, c}∗, then the word
abu ∈ L(B) synchronizes A′ since δ′(Q′, ab) = S. For the other direction, assume A′ is
synchronizing with respect to B by a word w. Then w is of the form ubv with u ∈ a∗,
v ∈ {b, c}∗. If u 6= ε, then δ(Q′, ub) = S and v synchronizes S to a single state. If u = ε,
then S ⊆ δ′(Q′, b) ⊆ Q since we never synchronized any states into r and we leave all
states in the set S ′ ∪ {r} with b and are not able to reach them again. In particular
δ′(S ′, b) = S. Therefore, bv synchronizes S to a single state without ever leaving Q. The
same idea can be applied to the constraing automata [1 1 2 ‡ - 2 2] and [1 2 2

‡ - 2 2].

5 Generalizations to Lift Results

In this section we aim for more general results, either by lifting existing cases by homo-
morphic images, or by identifying common patterns. For a map ϕ : Σ→ Γ∗ we identify
it with its natural homomorphism extension ϕ : Σ∗ → Γ∗ without further mentioning.

Theorem 10. Let L ⊆ Γ∗ and let ϕ : Σ∗ → Γ∗ be an homomorphism such that
ϕ(ϕ−1(L)) = L. Then L-Constr-Sync ≤log

m ϕ−1(L)-Constr-Sync.

Proof. Let A = (Γ, Q, δ) be some DCSA. We want to know if it is synchronizing with
respect to L. Therefore, we build the automaton A′ = (Σ, Q, δ′) according to the rule

δ′(p, x) = q if and only if δ(p, ϕ(x)) = q,

for x ∈ Σ. As ϕ is a homomorphism δ′ generalizes to words as expected. As ϕ is a
mapping, A′ is indeed deterministic and complete, since A is a DCSA. As the homomor-
phism ϕ is independent of A, automaton A′ can be constructed from A in logarithmic
space. Next we prove that the translation is indeed a reduction.

If u ∈ L is some synchronizing word for A, then there is some s ∈ Q such that δ(r, u) = s,
for all r ∈ Q. By our assumption ϕ(ϕ−1(L)) = L, we find some word w ∈ ϕ−1(L) with
ϕ(w) = u. As with δ(r, ϕ(w)) = s, it follows δ′(r, w) = s, hence w is a synchronizing
word for A′. Conversely, if w ∈ ϕ−1(L) is a synchronizing word for A′, then there is some
s ∈ Q such that δ′(r, w) = s, for all r ∈ Q. Further, ϕ(w) is a synchronizing word for A,
as by definition for all r ∈ Q, we have δ(r, ϕ(w)) = s. Moreover, because w ∈ ϕ−1(L),
we have ϕ(w) ∈ L, as ϕ(ϕ−1(L)) = L.

19

105

A typical application of the preceding theorem is to lift hardness results from smaller to
bigger alphabets; e.g., knowing PSPACE-hardness for the constraint language a(b + c)∗

lifts to PSPACE-hardness for the constraint language a(b + c + d)∗ via ϕ : a 7→ a,

b 7→ b, c 7→ c, d 7→ c.

Remark 3. It is impossible to further generalize the previous result from homomorphisms
to mappings induced by deterministic generalized sequential machines. Such a machine
allows to map (a + b)(a + b)∗ to a(b + c)∗, but the constraint (a + b)(a + b)∗ yields a
synchronization problem in P.

Theorem 11. Let L ⊆ Σ∗. Let ϕ : Σ∗ → Γ∗ be an homomorphism such that ϕ(Σ) is a
prefix code. Let c ∈ Γ with {c}Γ∗ ∩ ϕ(Σ) = ∅. Let k := max{ ` ≥ 0 | ∃u, v ∈ Γ∗ : uc`v ∈
ϕ(Σ) }. Then L-Constr-Sync ≤log

m {ck+1}ϕ(L)-Constr-Sync .

Proof. Let A = (Σ, Q, δ) be some DCSA. We want to know if it has a synchronizing
word from L. For each state q ∈ Q, introduce states

Qq := { qu | u is a proper prefix of some word in ϕ(Σ) } .

Set Q′ :=
⋃
q∈QQq. We identify all states qε with q ∈ Q, hence we have Q ⊆ Q′. Then,

build A′ = (Γ, Q′, δ′). For x ∈ Σ and states qu ∈ Qq and q ∈ Q, set

δ′(qu, x) =

qux if ux is a proper prefix of some word in ϕ(Σ),

δ(q, a) if ux = ϕ(a), for some a ∈ Σ,

q otherwise.

As ϕ(Σ) is a prefix code, the transition function δ′ is well-defined, because the first
two cases of its definition are mutually exclusive and there could not be two symbols a
and a′ with ux = ϕ(a) = ϕ(a′). The third case in the definition catches left-over cases,
including the transition for c where c can not appear in the next position of a code-word,
so that A′ is indeed a DCSA. Also, it should be clear that the translation of a table
for δ into a table for δ′ can be implemented with a logspace machine by a proper pointer
management.

The idea of the definition of δ′ is to replace letter x ∈ Σ with its image ϕ(x), hence,
in A′ we ‘branch’ along the words ϕ(Σ). With an undefined c-branch A′ will fall back
to the states of A (recall that Q ⊆ Q′). Observe that δ′(Q′, ck+1) = Q. For q ∈ Q, we
have δ′(q, ϕ(x)) = δ(q, x) by construction. So if A has a synchronizing word w ∈ L,
leading into the state s ∈ Q, then for all r ∈ Q we have δ′(r, ϕ(w)) = δ(r, w) = s and so
ck+1ϕ(w) ∈ {c}k+1ϕ(L) is a synchronizing word for A′.

20

106 Synchronization under Regular Constraints

Conversely, let ck+1u ∈ {c}k+1ϕ(L) be synchronizing for A′. Then u ∈ ϕ(L). Hence,
we can find some w ∈ L such that ϕ(w) = u. Moreover, by construction of A′, the
transition function δ′(t, c) = t for any t ∈ Q and since there are at most k consecutive
appearances of c in any code-word from ϕ(Σ), we have δ′(t, ck+1) ∈ Q for any t ∈ Q′ and
hence δ′(t, ck+1u) =: s ∈ Q. Using δ(r, x) = δ′(r, ϕ(x)) for r ∈ Q and x ∈ Σ, we find that
δ(r, w) = δ′(r, ϕ(w)) = s for all r ∈ Q, because δ′(Q′, ck+1) = Q by construction of A′.
Hence, w ∈ L is a synchronizing word for A.

In the special case where c does not occur in ϕ(Σ) at all, it is sufficient to choose k = 0,
i.e., to consider the language {c}ϕ(L) as constraint language.

With Theorem 11, we can transfer hardness results with constraint language L over
arbitrary alphabets to hardness results with constraint languages over a binary alphabet.

Remark 4. With the construction presented in Corollary 1 in [Berlinkov, 2014] (see pp.
220-221) we can lift our hardness results for constrained synchronization with constraint
automata with two states and a ternary alphabet to constrained synchronization prob-
lems with 6 states and a binary alphabet. More generally we can reduce the alphabet
size of a constraint automata from k = |Σ| to 2 by enlarging the size of its state set from
n = |Q| to k · n without affecting the hardness of the associated constrained synchro-
nization problem.

Up to this point, we did not make use of the fact that constraint languages considered
in this paper are given by finite automata. This changes from here onward.

It is hardness-preserving to plug sub-automata of some kind in front of an automata with
a hard constrained synchronization problem. A partial automaton A is called carefully
synchronizing if there exists a synchronizing word w for A such that the transition
function of A is defined for w on every state of A.

Theorem 12. Let B = (ΣB, PB, µB, pB0 , F) and C = (ΣC, P C, µC, pC0 , ∅) be PDFAs with
PB ∩ P C = ∅. For px ∈ P C let ν ⊆ {px} × (ΣB ∪ ΣC) × {pB0 } define the automaton
B′ = (ΣB∪ΣC, PB∪P C, µB∪µC ∪ν, pC0 , F). If the following three conditions are satisfied:

1. automaton B′ is deterministic,

2. automaton C ′ = (ΣB ∪ΣC, P C ∪{pB0 }, µC ∪ ν ∪{pB0 }× (ΣB ∪ΣC)×{pB0 }) is carefully
synchronizing, and

3. there exists a synchronizing word v = v1 . . . vn for C ′ such that v1 . . . vn−1 ∈ L(Cpx),
where Cpx results from C by adding px to the set of final states,

21

107

then L(B)-Constr-Sync ≤ L(B′)-Constr-Sync.

Proof. Note that the start state of B′ is the start state of C, but the final states of B′
are the ones from B.

pC0start px pB0 F

BC
B′

Constraint automaton

pC0 px

C

ν

pC0 px

C

ν

A

Illustration of A′

Figure 3: Schematic illustration of the constraint automaton B′ and the construction
of A′ in Theorem 12. Transitions inherited from A are not shown.

Let A = (ΣB, Q, δ) be a DCSA. We extend A to a DCSA A′ = (ΣB ∪ ΣC, Q′, δ′) in the
following way. For every state q ∈ Q we add a copy of C to A′, where a self-loop is added
for every yet undefined transition in A′. The C-copy is connected to q with the transitions
in ν where the target pB0 is replaced by q. Since the automaton B′ is deterministic by
condition (1), the C-copies, which are added to A, are also deterministic and so is A′.

It remains to show that A is synchronizing with respect to B if and only if A′ is synchro-
nizing with respect to B′. For the only if direction, assume w ∈ L(B) is a synchronizing
word for A. Considering A′, condition (2) states that there exists a word v that, applied
to all states of a copy of C, leads every state of this copy through the exit state px into
the original states of A. Further, condition (3) specifies that the last state leaves through
px with the last letter of v and that this last state is the image of the start state. Hence,
v is the label of a path from pC0 to pB0 in B′ and vw ∈ L(B′). Starting in all states of A′,
the active states in each C-copy act synchronously. Hence, δ′(Q′, v) = Q. Note that no
state of a C-copy is reachable by a state of Q. Since A′ acts like A on Q, |δ′(Q,w)| = 1

and vw is a synchronizing word for A′ with respect to B′.

We now prove the converse implication of the reduction property. Let w ∈ L(B′) be a
synchronizing word for A′. Since the C-copies are not reachable from any state in Q and
A′ acts on all C-copies simultaneously, we can identity a position in w at which the last
bunch of states leaves the C-copies. Let w = vx be a partition of w with v = v1 . . . vn,
vj ∈ ΣB ∪ΣC for j ≤ n, such that δ′(Q′, v) = Q and δ′(Q′, v1 . . . vj)∩ (Q′ \Q) 6= ∅ for all
j < n. Clearly, |δ′(Q, x)| = 1. Hence, x is a synchronizing word for A. The automaton B′
is in the B component after reading v, since the start state of B′ works in the same way

22

108 Synchronization under Regular Constraints

as the state pB0 in a C-copy in A and after reading v every state has left the C components
according to condition (2). Hence, x is a suffix of a word in L(B). Let i be an index
such that B′ is in the state pB0 after reading v1v2 . . . vi. Note that this i exists since pB0
must be part of any accepting path in B′. Then, vi+1vi+2 . . . vnx is a word of L(B) and
also synchronizing for A, since it contains x as a suffix.

As an illustration, we apply Theorem 12 to a family of languages.

Corollary 5. Let the language-family L consists of languages Li := (b∗a)i with i ≥ 2.
The constrained synchronization problem for all languages in L is NP-complete.

Proof. The membership in NP follows from Theorem 6 since all pumpable substrings
only contain the letter b. The NP-hardness of the constrained synchronization problem
for b∗ab∗a follows directly from the proof sketch of Proposition 1 since we can allow
an arbitrary number of b’s before the first a without changing the reduction. The NP-
hardness of the constrained synchronization problem for (b∗a)i with i > 2 follows from
the fact that there exists an automaton B′ with L(B′) = (b∗a)i that consists of the two
automata B (accepting b∗ab∗a) and C (describing (b∗a)i−3b∗) which are connected by an
a-transition and fulfill the conditions of Theorem 12.

6 Conclusions and Prospects

We have commenced a study of synchronization under regular constraints. The com-
plexity landscape of 2-state constraint automata with at most ternary input alphabets is
completely understood. In particular, binary alphabets yield polynomial-time solvable
synchronization problems, while ternary alphabets split the constrained synchronization
problems into polynomial-time solvable and PSPACE-complete cases. As already seen
in the introduction, this picture changes with 3-state automata, giving an NP-complete
scenario with binary alphabets. Our general results also imply PSPACE-complete syn-
chronization problems for binary constraint automata with at least six states. In the
following theorem, we present a three state constraint automaton with a binary alpha-
bet for which the associated constrained synchronization problem is PSPACE-complete,
also because of Theorem 2.

Theorem 13. Let B = [- 2 ‡ 3 3 ‡ 2 -] be a three state PDFA over the alphabet
{0, 1} with start state 1 and final state 3. Then the problem L(B)-Constr-Sync is
PSPACE-hard.

23

109

Proof. We give a reduction from the PSPACE-complete problem Sync-From-Subset.
Let A = ({a, b}, Q, δ) be a DCSA and S ⊆ Q. We construct a DCSA A′ = ({0, 1}, Q′, δ′)
which is synchronizing with respect to B if and only if the state set S is synchronizable
in A. The set Q′ contains the set Q, an annotated copy q̂ for each state q ∈ Q, and the
new states qT and qT1 . We encode the actions of a on A as the actions of 00 in A′. The
actions of b are transformed to 01. For the string 11 it holds that δ′(Q′, 11) = S. The
component consisting of qT and qT1 ensures that any synchronizing word for A′ starts
with 11. For t ∈ Q′, we define the transition function δ′ as

δ′(t, 0) :=

{
q̂ if t = q, for q ∈ Q
δ(q, a) if t = q̂, for q ∈ Q

,

δ′(t, 1) :=

s if t = q, for q ∈ Q \ S
t if t = q, for q ∈ S
δ(q, b) if t = q̂, for q ∈ Q

,

and δ(qT , 0) = δ(qT1 , 0) = qT , δ(qT , 1) = qT1 , δ(qT1 , 1) = s for some fixed s ∈ S. Note
that A′ is complete and deterministic. Assume w ∈ {a, b}∗ synchronizes S in A. Let
ϕ : {a, b} → {0, 1}∗ be an homomorphism with a 7→ 00, b 7→ 01. Then, w′ = 11ϕ(w)

synchronizes A′ with respect to B. Starting from a state q ∈ Q in A′, it holds that
δ′(q, 11) = s if q /∈ S and δ′(q, 11) = q otherwise. Also, the states qT and qT1 reach s

with the string 11. Further for q̂, q ∈ Q, it holds that δ′(q̂, 11) = s if δ′(q̂, 1) /∈ S and
δ′(q̂, 11) = δ′(q̂, 1) ∈ S, otherwise. Therefore, δ′(Q′, 11) = S. It is easy to see that ϕ(v)

with v ∈ {a, b} acts on A′ in the same as v acts on A. Hence, 11ϕ(w) ∈ L(B) is a
synchronizing word for A′.

For the other direction, assume w synchronizes A′ with respect to B. The state qT only
transitions into the state set Q with two consecutive 1s but 11 can only appear as a
prefix of any word in L(B). Since qT is not reachable from any state in Q′ \ {qT , qT1},
w must start with 11. As mentioned above, δ′(Q′, 11) = S. Since the states q̂ ∈ Q′ all
have just one incident edge, a merging of states can only happen with a transition that
reaches a state from Q. Hence, we can partition w into 11w1w2 . . . wn such that after
reading w up to 11 or to the end of some wi, only states from Q are active in A′, while
after reading w up to some proper factor of any wi, only states in Q′ \Q are active in A′.
Any state merging after the first 11 can only happen with the last letter of some wi.
Hence, ϕ−1(wi) are single letters and ϕ−1(w1w2 . . . wn) synchronizes S in A.

To summarize, binary 3-state constraint automata offer easy synchronization problems
as well as problems complete for NP and for PSPACE. However, we have no complete
complexity picture here, giving a natural research question. Motivated by a remark
of Rystsov [Rystsov, 1983] in a related setting, one could also ask if there are regular

24

110 Synchronization under Regular Constraints

language constraints that define synchronization problems that are complete for other
levels of the polynomial-time hierarchy. We presented several criteria for a regular lan-
guage L such that L-Constr-Sync ∈ P as well as generalization-results to transfer the
obtained hardness results for fixed L to larger classes of constraint languages, but a full
classification of the complexity of L-Constr-Sync for regular constraint languages L
is still an open research problem.

Acknowledgement. This project started during the workshop ‘Modern Complexity
Aspects of Formal Languages’ that took place at Trier University 11.–15. February, 2019.
The financial support of this workshop and in particular of the last two authors by the
DFG-funded project FE560/9-1 is gratefully acknowledged. V. Gusev is supported by
the Leverhulme Trust.

References

[Almeida et al., 2009] Almeida, J., Margolis, S., Steinberg, B., and Volkov, M. (2009).
Representation theory of finite semigroups, semigroup radicals and formal language
theory. Transactions of the American Mathematical Society, 361(3):1429–1461.

[Almeida et al., 2007] Almeida, M., Moreira, N., and Reis, R. (2007). Enumeration
and generation with a string automata representation. Theoretical Computer Science,
387(2):93–102.

[Ananichev et al., 2013] Ananichev, D. S., Volkov, M. V., and Gusev, V. V. (2013).
Primitive digraphs with large exponents and slowly synchronizing automata. Journal
of Mathematical Sciences, 192(3):263–278.

[Bassino and Nicaud, 2007] Bassino, F. and Nicaud, C. (2007). Enumeration and ran-
dom generation of accessible automata. Theoretical Computer Science, 381(1-3):86–
104.

[Béal et al., 2011] Béal, M., Berlinkov, M. V., and Perrin, D. (2011). A quadratic upper
bound on the size of a synchronizing word in one-cluster automata. International
Journal of Foundations of Computer Science, 22(2):277–288.

[Berlinkov, 2014] Berlinkov, M. V. (2014). Approximating the minimum length of syn-
chronizing words is hard. Theory of Computing Systems, 54(2):211–223.

[Berlinkov et al., 2018] Berlinkov, M. V., Ferens, R., and a, M. S. (2018). Complexity of
preimage problems for deterministic finite automata. In Potapov, I., Spirakis, P. G.,
and Worrell, J., editors, 43rd International Symposium on Mathematical Foundations

25

111

of Computer Science, MFCS, volume 117 of LIPIcs, pages 32:1–32:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.

[Blondel and Portier, 2002] Blondel, V. D. and Portier, N. (2002). The presence of a
zero in an integer linear recurrent sequence is NP-hard to decide. Linear Algebra and
its Applications, 351-352:91–98.

[Černý, 1964] Černý, J. (1964). Poznámka k homogénnym experimentom s konečnými
automatmi. Matematicko-fyzikálny časopis, 14(3):208–216.

[de Bondt et al., 2019] de Bondt, M., Don, H., and Zantema, H. (2019). Lower bounds
for synchronizing word lengths in partial automata. International Journal of Founda-
tions of Computer Science, 30(1):29–60.

[Domaratzki et al., 2002] Domaratzki, M., Kisman, D., and Shallit, J. (2002). On the
number of distinct languages accepted by finite automata with n states. Journal of
Automata, Languages and Combinatorics, 7(4):469–486.

[Fernau and Krebs, 2017] Fernau, H. and Krebs, A. (2017). Problems on finite automata
and the exponential time hypothesis. Algorithms, 10(1):24.

[Gazdag et al., 2009] Gazdag, Z., Iván, S., and Nagy-György, J. (2009). Improved upper
bounds on synchronizing nondeterministic automata. Information Processing Letters,
109(17):986–990.

[Gusev, 2012] Gusev, V. V. (2012). Synchronizing automata of bounded rank. In Mor-
eira, N. and Reis, R., editors, Implementation and Application of Automata - 17th
International Conference, CIAA, volume 7381 of LNCS, pages 171–179. Springer.

[Harrison, 1965] Harrison, M. A. (1965). A census of finite automata. Canadian Journal
of Mathematics, 17:100–113.

[Hopcroft et al., 2001] Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). In-
troduction to Automata Theory, Languages, and Computation. Addison-Wesley, 2nd
edition.

[Kannan and Lipton, 1986] Kannan, R. and Lipton, R. J. (1986). Polynomial-time al-
gorithm for the orbit problem. Journal of the ACM, 33(4):808–821.

[Kohavi and Jha, 2009] Kohavi, Z. and Jha, N. K. (2009). Switching and Finite Au-
tomata Theory. Cambridge University Press, 3rd edition.

[Kozen, 1977] Kozen, D. (1977). Lower bounds for natural proof systems. In 18th An-
nual Symposium on Foundations of Computer Science, FOCS, pages 254–266. IEEE
Computer Society.

26

112 Synchronization under Regular Constraints

[Larsen et al., 2014] Larsen, K. G., Laursen, S., and Srba, J. (2014). Synchronizing
strategies under partial observability. In Baldan, P. and Gorla, D., editors, Concur-
rency Theory - 25th International Conference, CONCUR, volume 8704 of LNCS, pages
188–202. Springer.

[Martyugin, 2009] Martyugin, P. (2009). Complexity of problems concerning reset words
for some partial cases of automata. Acta Cybernetica, 19(2):517–536.

[Martyugin, 2014] Martyugin, P. V. (2014). Computational complexity of certain prob-
lems related to carefully synchronizing words for partial automata and directing words
for nondeterministic automata. Theory of Computing Systems, 54(2):293–304.

[Morawietz et al., 2020] Morawietz, N., Rehs, C., and Weller, M. (2020). A timecop’s
work is harder than you think. In Esparza, J. and Král’, D., editors, 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August
24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 71:1–71:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[Reis et al., 2009] Reis, R., Moreira, N., and Almeida, M. (2009). On the representation
of finite automata. CoRR, abs/0906.2477.

[Rystsov, 1983] Rystsov, I. K. (1983). Polynomial complete problems in automata the-
ory. Information Processing Letters, 16(3):147–151.

[Sandberg, 2005] Sandberg, S. (2005). Homing and synchronizing sequences. In Broy,
M., Jonsson, B., Katoen, J., Leucker, M., and Pretschner, A., editors, Model-Based
Testing of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, pages 5–33.
Springer.

[Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192.

[Shitov, 2019] Shitov, Y. (2019). An improvement to a recent upper bound for synchro-
nizing words of finite automata. Journal of Automata, Languages and Combinatorics,
24(2-4):367–373.

[Stockmeyer and Meyer, 1973] Stockmeyer, L. J. and Meyer, A. R. (1973). Word prob-
lems requiring exponential time (preliminary report). In Proceedings of the fifth annual
ACM Symposium on Theory of Computing, STOC, pages 1–9. ACM.

[Szykuła, 2018] Szykuła, M. (2018). Improving the upper bound on the length of the
shortest reset word. In Niedermeier, R. and Vallée, B., editors, 35th Symposium on
Theoretical Aspects of Computer Science, STACS, volume 96 of LIPIcs, pages 56:1–
56:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

27

113

[Trakhtman, 2007] Trakhtman, A. (2007). The černý conjecture for aperiodic automata.
Discrete Mathematics and Theoretical Computer Science, 9(2).

[Volkov, 2008] Volkov, M. V. (2008). Synchronizing automata and the Černý conjecture.
In Martín-Vide, C., Otto, F., and Fernau, H., editors, Language and Automata Theory
and Applications, Second International Conference, LATA, volume 5196 of LNCS,
pages 11–27. Springer.

28

114 Synchronization under Regular Constraints

A A More Algebraic Approach to NP

Let us first present a more direct proof of NP-hardness as claimed in Proposition 1.
Occasionally, we make use of the notation δ−1(q, a) for a transition function δ, referring
to the set of those states p for which δ(p, a) = q.

The reduction is from the NP-complete DFA-Intersection Nonemptiness problem
for unary input languages [Stockmeyer and Meyer, 1973, Morawietz et al., 2020] and
works as follows.

Take an arbitrary instance A1, A2, . . . , An of the DFA-Intersection Nonemptiness

problem for unary input languages, or IE-UA for short, where the automata Ai are
specified by Ai = ({b}, Qi, δi, qi0, F

i). We modify each Ai by adding a fresh initial state pi0
to the automaton and extending the transition function δi to the set P i := Qi ∪ {pi0} as
follows: δi(pi0, b) := qi0. Clearly, a word w ∈ b∗ is accepted by the DFA Ai if and only if
the word bw is accepted by the DFA A′i := ({b}, P i, δi, pi0, F

i). Therefore, the answers
to the instances A1, A2, . . . , An and A′1, A′2, . . . , A′n of IE-UA coincide. W.l.o.g., we may
assume that the state sets P i for 1 ≤ i ≤ n are disjoint. Now consider the DFA A with
the state set Q := {s} ∪⋃n

i=1 P
i, where s is a new state, and the input letters a and b

whose actions at a generic state q ∈ Q are defined as follows:

δ(q, a) :=

pi0 if q ∈ P i \ F i,

s otherwise;
δ(q, b) :=

δi(q, b) if q ∈ P i,

s if q = s.
(1)

Observe that by construction s is a sink state in A, so that it will be the synchronizing
state.

We claim that A has a synchronizing word from the language ab∗a if and only if there
exists a word in b∗ which is accepted by all DFAs A1, A2, . . . , An. Indeed, if w ∈ b∗

is accepted by all DFAs A1, A2, . . . , An, then the word bw is accepted by all DFAs
A′1, A

′
2, . . . , A

′
n. Let us verify that the word abwa sends all states of A to the sink s.

From (1) we see that δ(Q, a) = {p1
0, p

2
0, . . . , p

n
0 , s}. Since Ai accepts w, the DFA A′i ac-

cepts bw, whence δ(pi0, bw) ∈ F i for each i = 1, 2, . . . , n. Thus, δ(Q, abw) ⊆ {s}∪⋃n
i=1 F

i,
and from (1) we conclude that δ(Q, abwa) = {s}.

Conversely, suppose that some v ∈ ab∗a is a synchronizing word for A. Since s is a sink
of A, δ(s, v) = s whence δ(Q, v) = {s}. Decompose v ∈ ab∗a as v = aua with u ∈ b∗.
The equality δ(Q, aua) = {s} forces the inclusion δ(Q, au) ⊆ δ−1(s, a) = {s} ∪⋃n

i=1 F
i.

On the other hand, δ(Q, a) ⊇ {p1
0, . . . , p

n
0}, since δ(pi0, a) = pi0 for each i = 1, 2, . . . , n.

Recall that pi0 /∈ F i by the construction of the DFA A′i. Thus, the word u ∈ b∗ must bring

29

115

each state pi0 to the state set {s} ∪⋃n
i=1 F

i. From (1) we see that this is only possible if
δ(pi0, u) ∈ F i for each i = 1, 2, . . . , n, that is, δi(pi0, u) ∈ F i in each DFA A′i. Thus, the
word u is accepted by all DFAs A′1, A′2, . . . , A′n. As already mentioned, pi0 /∈ F i, whence
u cannot be empty. Thus, u = bw for some w ∈ b∗, and w is accepted by all DFAs
A1, A2, . . . , An.

It remains to show that synchronization subject to the language ab∗a is in NP. This is
not completely trivial since there are synchronizing automata A for which the least N
such that abNa is a synchronizing word for A is exponentially big with respect to the
number of states in A. The number N can be guessed in binary, but a direct verification
that abNa synchronizes automaton A may take exponential time. We are going to show
how this difficulty can be bypassed.

Given a DFA A = ({a, b}, Q, δ) with |Q| := n, we first calculate the set δ(Q, a). Then
for each q ∈ δ(Q, a), we calculate its b-orbit Orbb(q), that is, the set

Orbb(q) = {q, δ(q, b), δ(q, b2), . . . , δ(q, bk), δ(q, bk+1), . . . , δ(q, bk+`−1)}

such that all states in Orbb(q) are distinct but δ(q, bk+`) = δ(q, bk). Let k(q) := k

and `(q) := `; these are nonnegative integers that do not exceed n. Observe that
Orbb(q) includes the cycle {δ(q, bk), . . . , δ(q, bk+`−1)} of length `(q); the rest k(q) states
in Orbb(q) forms the tail. For each state f ∈ Q, we build a system Σf :=

∧
q∈δ(Q,a) Σf,q of

number-theoretic conditions, where each Σf,q is a disjunction of equalities x = m and/or
“threshold congruences”, that is, conjunctions of the form

x ≡ m (mod d) ∧ x ≥ t,

for certain nonnegative integers m and t and a positive integer d. Consider the following
procedure.

1. Construct the set Tf = δ−1(f, a).

2. For each q ∈ δ(Q, a), consider the intersection Orbb(q) ∩ Tf . If for some q, the
intersection is empty, the construction of Σf fails, and we proceed to the next state in Q.

3. Suppose that Orbb(q)∩ Tf 6= ∅ for each q ∈ δ(Q, a). For each p ∈ Orbb(q)∩ Tf , let kp
be the least number such that p = δ(q, bkp). If kp ≥ k(q), that is, p lies on the cycle of
Orbb(q), we append to Σf,q as a disjunct the threshold congruence

x ≡ kp (mod `(q)) ∧ x ≥ k(q);

if p lies in the tail of Orbb(q), we append to Σf,q as a disjunct the equality x = kp.

30

116 Synchronization under Regular Constraints

Clearly, constructing the system Σf requires polynomial in n time. Here is the key
property of this gadget.

Lemma 8. A number N satisfies the system Σf if and only if δ(Q, abNa) = {f}.

Proof. The equality δ(Q, abNa) = {f} amounts to saying that for each q ∈ δ(Q, a),
the state δ(q, bN) belongs to Tf , and the inclusion δ(q, bN) ∈ Tf holds exactly when N
satisfies one of the conditions whose disjunction is Σf,q.

Now the non-deterministic polynomial algorithm for checking whether a given DFA A =

({a, b}, Q, δ) has a synchronizing word in ab∗a is clear: we build the systems Σf for
each f ∈ Q, guess the binary representation of a non-negative integer N and check if
this number satisfies one of these systems; the latter check takes polynomial time in the
length of the binary representation of N which in turn is polynomial in the size of A.
Lemma 8 ensures that the algorithm has a chance to succeed if and only if A has a
synchronizing word of the form abNa.

Connections to the Matrix Orbit Problem

We will rely on the matrix orbit problem to present another proof that synchronization
subject to ab∗a belongs to NP. Let n := |Q| and x ∈ Nn

0 be the characteristic vector of
δ(Q, a), i.e., x[i] = 1 if i ∈ δ(Q, a) and x[i] = 0, otherwise. Further, the (0, 1)-adjacency
matrix B of letter b is defined in such a manner that B[i, j] = 1 if and only if δ(i, b) = j

for all i, j ∈ Q.

The kth power of the matrix B would be denoted by Bk. Observe that Bk[i, j] is equal
to the number of walks of length k from i to j, which is at most 1 in our case as our
automata are deterministic. Thus, xBk[j] =

∑n
i=1 x[i]Bk[i, j] is equal to the number of

states mapped under the action of bk from δ(Q, a) to j.

Observe now that for every synchronizing word w = ua subject to w ∈ ab∗a there is
a vector y satisfying: (i) y[j] is equal to the cardinality of δ−1(j, u); (ii) the subset
{j : y[j] > 0} is synchronized by a; (iii) xBk = y holds true for some k. Moreover, every
y ∈ Nn

0 satisfying (ii) and (iii) gives rise to a synchronizing word subject to ab∗a.

Clearly, condition (iii) implies that the sum of entries of y is equal to |δ(Q, a)|, as our
input automaton is complete and deterministic and hence Bk has exactly a single one in
each row. Every such y can be encoded in polynomial space and one can check condition
(ii) in polynomial time. By the celebrated result of Kannan and Lipton [Kannan and

31

117

Lipton, 1986], condition (iii) can be verified in polynomial time as well, which confirms
our initial claim that the problem belongs to NP.

Similarly to the preceding considerations, the problem whether an automaton is synchro-
nized to a given state subject to ab∗a can be seen as an instance of the following equation
in k: xBky = c, where c ∈ Q and x, y ∈ Qn are given. It is not known whether the latter
problem is decidable, but it is at least NP-hard [Blondel and Portier, 2002]. Our reduc-
tion can be seen as an alternative proof of this fact.

32

118 Synchronization under Regular Constraints

Chapter 8

Synchronization under Dynamic

Constraints

Petra Wolf.

An extended abstract appeared in the proceedings of FSTTCS 2020:

Leibniz International Proceedings in Informatics (LIPIcs) 182 (2020) pp. 58:1 – 58:14.

DOI: 10.4230/LIPIcs.FSTTCS.2020.58.

This research paper was awarded with the 2021 publication prize of the Graduate Center

of the University of Trier, Faculty IV (consisting of Maths, Computer Science, Economics,

and Social Sciences).

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.58

120 Synchronization under Dynamic Constraints

Synchronization under Dynamic Constraints

Petra Wolf∗

Universität Trier, Germany

Abstract

We introduce a new natural variant of the synchronization problem. Our aim
is to model different constraints on the order in which a potential synchronizing
word might traverse through the states. We discuss how a word can induce a
state-order and examine the computational complexity of different variants of the
problem whether an automaton can be synchronized with a word of which the
induced order agrees with a given relation. While most of the problems are PSPACE-
complete we also observe NP-complete variants and variants solvable in polynomial
time. One of them is the careful synchronization problem for partial weakly acyclic
automata (which are partial automata whose states can be ordered such that no
transition leads to a smaller state), which is shown to be solvable in time O(k2n2)

where n is the size of the state set and k is the alphabet-size. The algorithm even
computes a synchronizing word as a witness. This is quite surprising as the careful
synchronization problem uses to be a hard problem for most classes of automata.
We will also observe a drop in the complexity if we track the orders of states on
several paths simultaneously instead of tracking the set of active states. Further,
we give upper bounds on the length of a synchronizing word depending on the size
of the input relation and show that (despite the partiality) the bound of the Černý
conjecture also holds for partial weakly acyclic automata.

1 Introduction

We call A = (Q,Σ, δ) a deterministic partial (semi-) automaton (DPA) if Q is a finite set
of states, Σ is a finite alphabet, and δ : Q × Σ → Q is a (potentially partial) transition

∗The author was supported by DFG-funded project FE560/9-1

1

121

function. If δ is defined for every element in Q× Σ, we call A a deterministic complete
(semi-) automaton (DCA). Clearly, every DCA is also a DPA. We do not specify any start
and final states as we are only interested in the transition of states. A DCA A = (Q,Σ, δ)

is synchronizing if there exists a word w ∈ Σ∗ such that w takes every state to the same
state. In that case, we call w a synchronizing word for A. If we are only interested in
synchronizing a subset of states S ⊆ Q we refer to the problem as subset synchronization.

One of the oldest applications of the intensively studied topic of synchronizing automata
is the problem of designing parts orienters, which are robots or machines that get an
object in an (due to a lack of expensive sensors) unknown orientation and transform it
into a defined orientation [Ananichev and Volkov, 2004]. In his pioneering work, Natara-
jan [Natarajan, 1986] modeled the parts orienters as deterministic complete automata
where a state corresponds to a possible orientation of a part and a transition of some
letter a from state q corresponds to applying the modifier corresponding to a to a part
in orientation q. He proved that the synchronization problem is solvable in polynomial
time for – what is later called – the class of orientable automata [Ryzhikov, 2019] if the
cyclic order respected by the automaton is part of the input. Many different classes of
automata have since been studied regarding their synchronization behavior. We refer
to [Volkov, 2008, Béal and Perrin, 2016, Truthe and Volkov, 2019] for an overview. The
original motivation of designing a parts orienter was revisited in [Türker and Yenigün,
2015] where Türker and Yenigün modeled the design of an assembly line, which again
brings a part from an unknown orientation into a known orientation, where different
modifiers have different costs. What has not been considered so far is that different
modifiers can have different impact on the parts and as we do not know the current
orientation we might want to restrict the chronology of applied modifiers. For example,
if the part is a box with a fold-out lid, turning it upside-down will cause the lid to open.
In order to close the lid one might need another modifier such as a low bar which brushes
the lid and closes it again. To specify that a parts orienter should deliver the box facing
upward with a closed lid one needs to encode something like: “When the box is in the
state facing down, it later needs to be in the state lid closed ”. But this does not stop
us from opening the lid again, so we need to be more precise and encode: “After the
last time the box was in the state facing down, it needs to visit the state lid closed
at least once”. We will implement these conditions in our model of a parts orienter
by enhancing a given DCA with a relation R. We will then consider different ways of
how a synchronizing word implies an order on the states and ask whether there exists
a synchronizing word whose implied state-order agrees with the input-relation R. The
case-example above will be covered by the first two introduced orders. The third con-
sidered order relates to the following scenario: Let us again picture the box with the lid

2

122 Synchronization under Dynamic Constraints

in mind, but this time the box initially contains some water. We would like to have the
box in a specific orientation with the lid open but the water should not be shed during
orientating. We have a modifier that opens the lid and a modifier which rotates the box.
Clearly we do not want the box to face downwards after the lid has been opened. So,
we encode: “As soon as the state lid open has been reached, the state facing downwards
should never be entered again”.

For every type of dynamic constraint (which we will also call order), we investigate the
computational complexity of the problem whether a given automaton admits a synchro-
nizing word that transitions the states of the automaton in an order that is conform
with a given relation. Thereby, we distinguish between tracking all active states simul-
taneously and tracking each state individually. We observe different complexities for
different ordering concepts and get a good understanding of which ordering constraints
yield tractable synchronization problems and which do not. The complexity of the prob-
lem also depends on how detailed we describe the allowed sequence of states.

2 Related Work

The problem of checking whether a synchronizing word exists for a given DCA A =

(Q,Σ, δ) can be solved in time O(|Q|2|Σ|), when no synchronizing word is computed,
and in time O(|Q|3) when a witnessing synchronizing word is demanded [Eppstein,
1990, Volkov, 2008]. In comparison, if we only ask for a subset of states S ⊆ Q to
be synchronized, the problem becomes PSPACE-complete for general DCAs [Sandberg,
2004]. These two problems have been investigated for several smaller classes of automata
involving orders on states. Here, we want to mention the class of oriented automata
whose states can be arranged in a cyclic order which is preserved by all transitions. This
model has been studied among others in [Natarajan, 1986, Eppstein, 1990, Ananichev
and Volkov, 2004, Ryzhikov and Shemyakov, 2018, Volkov, 2008]. If the order on the
states is linear instead of cyclic, we get the class of monotone automata which has
been studied in [Ananichev and Volkov, 2004, Ryzhikov and Shemyakov, 2018]. An
automaton is called aperiodic [Béal and Perrin, 2016] if there is a non-negative integer
k such that for any word w and any state q it holds that δ(q, wk) = δ(q, wk+1). An
automaton is called weakly acyclic [Ryzhikov, 2019] if there exists an ordering of the
states q1, q2, . . . , qn such that if δ(qi, a) = qj for some letter a ∈ Σ, then i ≤ j. In
other words, all cycles in a WAA are self-loops. In Section 4 we will consider partial
WAAs. The class of WAAs forms a proper subclass of the class of aperiodic automata.
Each synchronizing aperiodic automaton admits a synchronizing word of length at most
n(n− 1)/2 [Trakhtman, 2007], whereas synchronizing WAAs admit synchronizing words

3

123

of linear lengths [Ryzhikov, 2019]. Asking whether an aperiodic automaton admits a
synchronizing word of length at most k is an NP-complete task [Volkov, 2008] as it is for
general DCAs [Rystsov, 1980, Eppstein, 1990]. The subset synchronization problem for
WAAs, and hence for aperiodic automata, is NP-complete [Ryzhikov, 2019].

Going from complete automata to partial automata normally brings a jump in com-
plexity. For example, the so called careful synchronization problem for DPAs asks for
synchronizing a partial automata such that the synchronizing word w is defined on all
states. The problem is PSPACE-complete for DPAs with a binary alphabet [Martyugin,
2014]. It is even PSPACE-complete for DPAs with a binary alphabet if δ is undefined for
only one pair in Q×Σ [Martyugin, 2012]. The length of a shortest carefully synchroniz-
ing word c(n), for a DPA with |Q| = n, differs with Ω(3

n
3) ≤ c(n) ≤ O(4

n
3 · n2) [Mar-

tyugin, 2012] significantly from the cubic upper-bound for complete automata. Also
for the smaller class of monotone partial automata with an unbounded alphabet size,
an exponential lower bound on the length of a shortest carefully synchronizing word
is known, while for fixed alphabet sizes of 2 and 3 only a polynomial lower bound is
obtained [Ryzhikov and Shemyakov, 2018]. The careful synchronization problem is NP-
hard for partial monotone automata over a four-letter alphabet [Türker and Yenigün,
2015, Ryzhikov and Shemyakov, 2018]. It is also NP-hard for aperiodic partial automata
over a three-letter alphabet [Ryzhikov, 2019]. In contrast we show in Section 4 that the
careful synchronization problem is decidable in polynomial time for partial WAAs.

In [Ryzhikov, 2019, Ryzhikov and Shemyakov, 2018] several hardness and inapprox-
imability results are obtained for WAAs, which can be transferred into our setting as
depicted in Section 4. We will also observe W[1]-hardness results from the reductions
given in [Ryzhikov, 2019]. So far, only little is known (see for example [Fernau et al.,
2015, Vorel and Roman, 2015, Bruchertseifer and Fernau, 2019]) about the parameterized
complexity of all the different synchronization variants considered in the literature.

While synchronizing an automaton under a given order, the set of available (or allowed)
transitions per state may depend on the previously visited states on all paths. This
dynamic of allowed transitions of a state depending on the history of chosen transition
can also be observed in weighted and timed automata [Doyen et al., 2014]. More static
constraints given by a second automaton have been discussed in [Fernau et al., 2019].

4

124 Synchronization under Dynamic Constraints

3 Problem Definitions

A deterministic semi-automaton A = (Q,Σ, δ) that might either be partial or complete
is called an automaton. The transition function δ is generalized to words in the usual
way. It is further generalized to sets of states S ⊆ Q as δ(S,w) := {δ(q, w) | q ∈ S}.
We sometimes refer to δ(S,w) as S.w. We call a state q active regarding a word w if
q ∈ Q.w. If for some w ∈ Σ∗, |Q.w| = 1 we call q ∈ Q.w a synchronizing state. We
denote by |S| the size of the set S. With [i..j] we refer to the set {k ∈ N | i ≤ k ≤ j}.
For a word w over some alphabet Σ, we denote by |w| the length of w, by w[i] the ith

symbol of w (or the empty word ε if i = 0) and by w[i..j] the factor of w from symbol i to
symbol j. For each state q, we call the sequence of active states q.w[i] for 0 ≤ i ≤ |w| the
path induced by w starting at q. We expect the reader to be familiar with basic concepts
in complexity theory, approximation theory and parameterized complexity theory. We
refer to the textbooks [Cygan et al., 2015, Sipser, 1997, Ausiello et al., 1999]. as a
reference.

We are now presenting different orders lw which describe how a word traverses an
automaton. We describe how a word implies each of the three presented orders. The
first two orders relate the last visits of the states to each other, while the third type of
order relates the first visits. We will then combine the order with an automaton A and
a relation R ⊆ Q2 given in the input and ask whether there exists a synchronizing word
for A such that the implied order of the word agrees with the relation R. An order lw

agrees with a relation R ⊆ Q2 if and only if for all pairs (p, q) ∈ R it holds that plw q,
i.e., R ⊆ lw.

For any of the below defined orderslw ⊆ Q×Q, we define the problem of synchronization
under order and subset synchronization under order as:

Definition 1 (Sync-Under-lw). Given a DCA A = (Q,Σ, δ) and a relation R ⊆ Q2.
Does there exist a word w ∈ Σ∗ such that |Q.w| = 1 and R ⊆ lw?

Definition 2 (Subset-Sync-Under-lw). Given a DCA A = (Q,Σ, δ), S ⊆ Q, and a
relation R ⊆ Q2. Is there a word w ∈ Σ∗ with |S.w| = 1 and R ⊆ lw?

It is reasonable to distinguish whether the order should include the initial configuration
of the automaton or if it should only describe the consequences of the chosen transitions.
In the former case, we refer to the problem as Sync-Under-0 -lw (starting at w[0]), in
the latter case as Sync-Under-1 -lw (starting at w[1]), and if the result holds for both
variants, we simply refer to is as Sync-Under-lw. Examples for positive and negative
instances of the problem synchronization under order for some discussed variants are
illustrated in Figure 1. Let first(q, w, S) be the function returning the minimum of

5

125

positions at which the state q appears as an active state over all paths induced by w

starting at some state in S. Accordingly, let last(q, w, S) return the maximum of those
positions. Note that first(q, w, S) = 0 for all states q ∈ S and > 0 for q ∈ Q\S. If q
does not appear on a path induced by w on S, then set first(q, w, S) := |w| + 1 and
last(q, w, S) := −1. In the Sync-Under-1 -lw problem variant, the occurrence of a
state at position 0 is ignored (i.e., if q occurs only at position 0 while reading w on S,
then last(q, w, S) = −1). In the following definitions let A = (Q,Σ, δ) be a DCA and let
p, q ∈ Q. The following relations lw are defined for every word w ∈ Σ∗.

Definition 3 (Order l < l on sets). p ∝l<lw@s q :⇔ last(p, w,Q) < last(q, w,Q).

Definition 4 (Order l ≤ l on sets). p ∝l≤lw@s q :⇔ last(p, w,Q) ≤ last(q, w,Q).

The second order differs from the first in the sense that q does not have to appear finally
without p, instead they can disappear simultaneously. Further, note that in comparison
with order ∝l<lw@s, for a pair (p, q) in order ∝l≤lw@s it is not demanded that q is active after
reading w up to some position i > 0. This will make a difference when we later consider
the orders on isolated paths rather than on the transition of the whole state set. It
can easily be verified that for any word w ∈ Σ∗ and any automaton A = (Q,Σ, δ) the
order∝l<lw@s is a proper subset of∝l≤lw@s. For the order∝l≤lw@s, it makes no difference whether
we take the initial configuration into account since states can disappear simultaneously.

So far, we only introduced orders which consider the set of active states as a whole. It
did not matter which active state belongs to which path and a state on a path τ could
stand in a relation with a state on some other path ρ. But, in most scenarios the fact
that we start with the active state set Q only models the lack of knowledge about the
actual current state. In practice only one state q is active and hence any constraints on
the ordering of transitioned states should apply to the path starting at q. Therefore,
we are introducing variants of order 1 and 2 which are defined on paths rather than on
series of state sets.

Definition 5 (Order l < l on paths).

p ∝l<lw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) < last(q, w, {r}).

Definition 6 (Order l ≤ l on paths).

p ∝l≤lw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) ≤ last(q, w, {r}).

The orders∝l<lw@p and∝l≤lw@p significantly differ since the synchronization problem (starting
at position 1) for ∝l<lw@p is in NP while it is PSPACE-complete for ∝l≤lw@p.

6

126 Synchronization under Dynamic Constraints

While the previously defined orders are bringing “positive” constraints to the future
transitions of a word, in the sense that the visit of a state p will demand for a later
visit of the state q (as opening the lid demands closing the lid later in our introductory
example), we will now introduce an order which yields “negative” constraints. The third
kind of order demands for a pair of states (p, q) that the (first) visit of the state q forbids
any future visits of the state p (like do not turn the box after opening the lid). This
stands in contrast to the previous orders where we could made up for a “forbidden” visit
of the state p by visiting q again. The order l < f will only be considered on paths
since when we consider the state set Q, every pair in R would already be violated in
position 0.

Definition 7 (Order l < f on paths).

p ∝l<fw@p q :⇔ ∀r ∈ Q : last(p, w, {r}) < first(q, w, {r}).

Note that ∝l<fw@p is not transitive; e.g., for R = {(1, 2), (2, 3)} we are allowed to go from
3 to 1 as long as we have not transitioned from 1 to 2 yet. For the order l < f , we
will also consider the special case of R being a strict total order (irreflexive, asymmetric,
transitive, and total).

Definition 8 (Sync-Under-Total-∝l<fw@p). Given a DCA A = (Q,Σ, δ), a strict and
total order R ⊆ Q2. Is there a word w ∈ Σ∗ with |Q.w| = 1 and R ⊆∝l<fw@p?

The orders on path could also be stated as LTL formulas of some kind which need to
be satisfied on every path induced by a synchronizing word w and our hardness results
transfer to the more general problem whether a given DCA can be synchronized by a
word such that every path induced by w satisfies a given LTL formula. The orders on
sets could be translated into LTL formulas which need to be satisfied on the path in the
powerset-automaton starting in the state representing Q.

Using the temporal operators globally �, finally ♦, and until U , we can express the
orders ∝l≤l, ∝l<l, and ∝l<f as follows, see [Manna and Pnueli, 1990, Chang et al., 1992]
for details on these operators. For instance, the order p ∝l≤l q can be expressed as
�(♦q ∨�¬p), meaning that globally it holds that finally q holds or globally p does not
hold; the order p ∝l<l q can be expressed as ♦(q ∧ �¬p), meaning that finally q holds
and from there on p does not hold anymore; and the order p ∝l<f q can be expressed
as ¬q U(�¬p), meaning that there is a position from which on p does not hold anymore
and before that q does not hold.

Despite the similarity of the chosen orders and their translated LTL formulas we need
different constructions for the considered orders as the presented attempts mostly do

7

127

1 2

345

a
b

ab

a

b
a

b

a

b

1 2 3 4 5
b 2 4 2 1 1
a 3 3 3 1 1
a 4 4 4 1 1
b 1 1 1 2 2
b 2 2 2 4 4
a 3 3 3 3 3

X 7

∝l<lw@s (1, 2) (2, 4)

∝l≤lw@s (2, 4) (2, 1)

∝l<lw@p (1, 2) (4, 5)

∝l≤lw@p (5, 5) (2, 4)

∝l<fw@p (5, 2) (4, 3)

Figure 1: DCA A (left) with all paths induced by w = baabba (middle) and relations
R consisting of single pairs forming a positive, resp. negative, instance for versions of
Sync-Under-lw (right).

Synchronization Subset Synchronization
Order l < l l ≤ l l < f l<f -tot l </≤ l l < f l<f -tot

Set 0 PSPACE-c PSPACE-c – – PSPACE-c – –
1 PSPACE-c PSPACE-c – – PSPACE-c – –

Path0 in NP NP-hard PSPACE-c P PSPACE-c PSPACE-c NP-c
1 in NP PSPACE-c PSPACE-c NP-c PSPACE-c PSPACE-c NP-c

Table 1: Overview of the complexity for synchronization (on the left), and subset syn-
chronization under order (on the right) for relations ∝l<lw@s, ∝l<lw@p, ∝l≤lw@s, ∝l≤lw@p, and ∝l<fw@p

(tot. is short for total).

not transfer to the other problems. Therefore, it is not to be expected that a general
construction for restricted LTL formulas can be obtained. Our aim is to focus on re-
stricting the order in which states appear and disappear on a path in the automaton
or on a path in the powerset-automaton (remember the introductory example). Hence,
we have chosen the stated definitions in order to investigate the complexity of problems
where the LTL formula is always of the same type, i.e., comparing only the last or first
appearances of states on a path. We leave it to future research to investigate other types
of LTL formulas. In order to express synchronizability of Kripke structures, an extension
to CTL has been introduced in [Chatterjee and Doyen, 2016]. Note that synchronization
of Kripke structures is more similar to D3-directing words [Imreh and Steinby, 1999] for
unary NFAs as in contrast to general DFAs the labels of the transitions are omitted in
Kripke structures.

Finally, we introduce two problems from which we will reduce from in the next section.

Definition 9 (Careful Sync (PSPACE-complete [Martyugin, 2014])). Given a DPA
A = (Q,Σ, δ). Is there a word w ∈ Σ∗, s.t. |Q.w| = 1 and w is defined on all q ∈ Q?

Definition 10 (Vertex Cover (NP-complete [Sipser, 1997])). Given a graph G =

(V,E) and an integer k ≤ |V |. Is there a vertex cover V ′ ⊆ V of size |V ′| ≤ k? A vertex
cover is a set of states that contains at least one vertex incident to every edge.

8

128 Synchronization under Dynamic Constraints

4 Main Results

We now investigate the complexity of the introduced problems. An overview on the
obtained results is given in Table 1.

Theorem 1. For all orders l ∈ {∝l<lw@s,∝l<lw@p,∝l≤lw@s,∝l≤lw@p,∝l<fw@p}, the problem Sync-

Under-l is contained in PSPACE. Further, it is FPT with parameter |Q|.

Proof. Let A = (Q,Σ, δ) be a DCA and R ⊆ Q2. We decide if there exists a synchro-
nizing word w ∈ Σ∗ for A with R ⊆ lw for lw ∈ {∝l<lw@s,∝l<lw@p,∝l≤lw@s, ∝l≤lw@p,∝l<fw@p}
by performing reachability tests in an enhanced version of the powerset-automaton
P(A) = (P(Q),Σ, δP) for A. Therefore, we enhance P(A) with the information about
the set of active pairs in R in every state. Here, a pair in R is active during the transition
of a word if it constrains which states might be, or need to be visited in the future. For
instance, in the example in Figure 1 concerning the order ∝l<lw@s, the pair (2, 4) is active
while reading the prefix ba, since the state 2 has appeared as an active state while the
state 4 has not appeared without 2 as an active state yet. It is not active after reading
baa, since now 4 is active without 2 and hence the pair (2, 4) is satisfied and does not
demand for further state visits. The pair becomes active again after reading baab since
again 2 became active demanding for the state 4 to become active without 2 again.

For the orders ∝l<lw@s and ∝l≤lw@s, we will enhance each state q̂ ⊆ Q in P(A) with the
information on the set of active pairs in R in the configuration represented by q̂. For
that, the state q̂ will be copied 2|R| times. For the orders ∝l<lw@p, ∝l≤lw@p, ∝l<fw@p, we enhance
every state q̂ ⊆ Q in P(A) by a set St of active pairs in R for each state t ∈ q̂. Here,
the state q̂ will be copied up to |Q| · 2|R| times, and the size of the automaton P(A) is
bounded by 2|Q||Q|2|R| = 2O(|Q|

2). Hence, for every pair of start and end state the length
of a shortest path connecting them is bounded by 2O(|Q|

2).

First, we clarify when a pair (p, q) ∈ R is called active in a set state q̂ ⊆ Q, respectively
in a state t ∈ q̂, of the automaton P(A) by defining the transition function δP : For each
q̂ ⊆ Q, σ ∈ Σ, we set E := {δ(r, σ) | r ∈ q̂} and,

for each S ⊆ R we set:

• ∝l<lw@s: δ
P((q̂, S), σ) = (E, (S ∪ {(p, q) ∈ R | p ∈ E}) \{(p, q) ∈ S | q ∈ E ∧ p /∈ E}),

• ∝l≤lw@s: δ
P((q̂, S), σ) = (E, (S ∪ {(p, q) ∈ R | p ∈ E}) \{(p, q) ∈ S | q ∈ E}),

for each q̂ = {q1, q2, . . . , qk} and S = {(q1, S1), (q2, S2), . . . , (qk, Sk)} we set:

9

129

• ∝l<lw@p: δ
P((q̂, S), σ) = (E, {(δ(q1, σ), S ′δ(q1,σ)), (δ(q2, σ), S ′δ(q2,σ)), . . . , (δ(qk, σ), S ′δ(qk,σ))})

with S ′δ(qi,σ) :=
⋃
{Sj |(qj ,Sj)∈S∧δ(qj ,σ)=δ(qi,σ)} (Sj ∪ {(p, q) ∈ R | p = δ(qi, σ)}) \{(p, q) ∈

R | q = δ(qi, σ)},

• ∝l≤lw@p: δ
P((q̂, S), σ) = (E, {(δ(q1, σ), S ′δ(q1,σ)), (δ(q2, σ), S ′δ(q2,σ)), . . . , (δ(qk, σ), S ′δ(qk,σ))})

with S ′δ(qi,σ) :=
⋃
{Sj |(qj ,Sj)∈S∧δ(qj ,σ)=δ(qi,σ)} (Sj ∪ {(p, q) ∈ R | p = δ(qi, σ)}) \{(p, q) ∈

R | q = δ(qi, σ)},

• ∝l<fw@p: δ
P((q̂, S), σ) = (E, {(δ(q1, σ), S ′δ(q1,σ)), (δ(q2, σ), S ′δ(q2,σ)), . . . , (δ(qk, σ), S ′δ(qk,σ))})

with S ′δ(qi,σ) :=
⋃
{Sj |(qj ,Sj)∈S∧δ(qj ,σ)=δ(qi,σ)} (Sj)∪ {(p, q) | q = δ(qi, σ)}, if {(δ(qi, σ), q) |

q ∈ Q} ∩ S ′δ(qi,σ) = ∅ for all (δ(qi, σ), S ′δ(qi,σ)). Otherwise the transition yields to the
error state (∅, ∅).

Generally speaking, the transition function δP updates the set of active states according
to δ and further updates the set of active pairs S according to the newly visited states.
Thereby, regarding the orders 1 and 2, the visit of a new state can activate additional
pairs or satisfy some pairs (p, q) and hence remove them from S while regarding to the
third order a state visit can only activate more pairs. Here, a transition yields to the
error state (∅, ∅) if it would violate any active pair.

We set Singl := {({p}, ∅) | p ∈ Q}. Depending on the order, we define different start
and final states for the automaton P(A).:

• ∝l<lw@s: Start state: (Q,R), final states: Singl.

• ∝l≤lw@s: Start state: (Q, ∅), final states: Singl.

• ∝l<lw@p: Start state: (Q, {(q1, R\{(p, q) ∈ R | q = q1}), . . . , (q|Q|, R\{(p, q) ∈ R |
q = q|Q|})}) for the case including i = 0, and (Q, {(q1, R), (q2, R), . . . , (q|Q|, R)})
otherwise; final states: Singl.

• ∝l≤lw@p: Start state: (Q, {(q1, S1), . . . , (q|Q|, S|Q|)}) with Si := {(p, q) ∈ R | p = qi}
for the case including i = 0, and (Q, ∅) otherwise; final states: Singl.

• ∝l<fw@p: Start state: (Q, {(q1, S1), . . . , (q|Q|, S|Q|)}) with Si := {(p, q) ∈ R | q = qi}
for the case including i = 0, and (Q, ∅) otherwise; final states: ({p}, ∗), every state
with a singleton state set and an arbitrary set of active pairs.

In each case, the automaton A is synchronizable by a word w with R ⊆ lw if and
only if the language accepted by P(A) is non-empty. This can be checked by non-
deterministically stepwise guessing a path from the start state to some final state. Since
each state contains only up to |Q|+1 bit-strings of length up to |Q|2 a state of P(A) can

10

130 Synchronization under Dynamic Constraints

be stored in polynomial space. Hence, we can decide non-emptiness of L(P(A)) in non-
deterministic polynomial space and according to Savitch theorem [Savitch, 1970] we can
also do this using deterministic polynomial space. Furthermore, since the size of P(A)

is bounded by 2O(|Q|
2) a recursive search for a path from the start state to any final state

can be done in time 2O(|Q|
2) which gives us an FPT algorithm in the parameter |Q|.

After giving a general PSPACEupper bound, we now focus on lower bounds. First, we
focus on the problem Sync-Under-∝l≤lw@s and present a reduction from the PSPACE-
complete problem of Careful Sync for DPAs. Since this problem is already PSPACE-
complete for binary DPAs with one undefined transition [Martyugin, 2012], and the
number of undefined transitions directly correlates to the size of the relation R, we get
the following result:

Theorem 2. Sync-Under-∝l≤lw@s is PSPACE-complete, even for |R| = 1 and |Σ| = 2.

Proof. We reduce from the PSPACE-complete Careful Sync problem for DPAs, see
[Martyugin, 2012, Martyugin, 2014]. Let A = (Q,Σ, δ) be a DPA. We construct from
A a DCA A′ = (Q′ = Q ∪ {q�, r},Σ, δ′) with q�, r /∈ Q. For every pair q ∈ Q, σ ∈ Σ

for which δ(q, σ) is undefined, we define the transition δ′(q, σ) = q�. On all other pairs
δ′ agrees with δ. Further, for some arbitrary state t ∈ Q and for all γ ∈ Σ we set
δ′(q�, γ) = δ′(t, γ) (note that this can be q� itself) and δ′(r, γ) = δ′(t, γ). We set the
relation R to R := {(q�, r)}.

Assume there exists a word w ∈ Σ∗, |w| = n that synchronizes A without using an
undefined transition. Then, δ(q, w[1]) is defined for all states q ∈ Q. The letter w[1]

acts on A′ in the following way: (1) δ′(r, w[1]) = δ′(q�, w[1]) = δ(t, w[1]) which is defined
by assumption; (2) δ′(Q,w[1]) ⊆ Q since δ(q, w[1]) is defined for all states q ∈ Q.
The combination of (1)-(2) yields δ′(Q′, w[1]) ⊆ Q. We further constructed δ′ such
that δ′(Q′, w[1]) = δ(Q,w[1]). Since δ(q, w[2..n]) is defined by assumption for every
q ∈ δ(Q,w[1]), δ′ agrees with δ on w[2..n] for every q ∈ δ(Q,w[1]). This means especially
that while reading w[2..n] in A′ on the states in δ′(Q′, w[1]) the state q� is not reached
and that δ′(Q′, w) = δ(Q,w). Therefore, w also synchronizes the automaton A′. The
state q� is only active in the start configuration where no letter of w is read yet and is
not active anymore while reading w. The same holds for r, hence R = {(q�, r)} ⊆ ∝l≤lw@s.

For the other direction, assume there exists a word w ∈ Σ∗, |w| = n that synchronizes A′

with (q�, r) ∈ ∝l≤lw@s. Then, w can be partitioned into w = uv with u, v ∈ Σ∗ where r is
not active while reading the factor v in w. The only position of w in which r is active
due to the definition of δ′ is before any letter of w is read. Hence, we can set u = ε

and v = w. As (q�, r) ∈ ∝l≤lw@s it holds for all i ∈ [1..n] that q� /∈ δ′(Q′, v[1..i]). Hence,

11

131

δ′(q, v) is defined for every state q ∈ Q. Since δ′ and δ agree on the definition range
of δ it follows that v also synchronizes the state set Q in A without using an undefined
transition.

Remark 1. The construction works for both variants (with and without 0) of the problem.
It can further be adapted for the order ∝l<lw@s (both variants) by introducing a copy q̂ of
every state in Q ∪ {r} and setting δ′(q̂, σ) = q for every σ ∈ Σ, q ∈ Q ∪ {r}. For all
other transitions, we follow the above construction. We keep R := {(q�, r)}. Since r is
left after w[2] for any word w ∈ Σ∗ with |w| ≥ 2 in order to satisfy R the state q� needs
to be left with w[1] such that afterwards r is active without q�. Note that q� has not
been copied.

Corollary 1. Sync-Under-∝l<lw@s is PSPACE-complete even for |R| = 1 and |Σ| = 2.

Remark 2. The reduction presented in the proof of Theorem 2 can also be applied
to show the PSPACE-completeness of Sync-Under-1 -∝l≤lw@p. Since the state r cannot
be reached from any other state, the state q� needs to be left with the first letter of
any synchronizing word and must not become active again on any path. The rest of
the argument follows the proof of Theorem 2. Note that the construction only works for
Sync-Under-1 -∝l≤lw@p. If we consider Sync-Under-0 -∝l≤lw@p the problem might become
easier. But it is at least NP-hard.

Theorem 3. The problem Sync-Under-0 -∝l≤lw@p is NP-hard.

Proof. We give a reduction from Vertex Cover. We refer to Figure 2 for a schematic
illustration. Let G(V,E) be a graph and let k ∈ N. We construct from G a DCA
A = (Q,Σ, δ) in the following way. We set Σ = V ∪ {p} for some p /∈ V . We start
with Q = {f, r, s} where s is a sink state, meaning δ(s, σ) = s for all σ ∈ Σ, f will
be the “false way” and r will be the “right way”. We set δ(r, p) = δ(f, p) = s and
δ(r, v) = r, δ(f, v) = f for all other v ∈ Σ. For every edge eij ∈ E connecting some
vertices vi, vj ∈ V , we create two states eij and êij and set δ(eij, vi) = δ(eij, vj) = êij,
δ(eij, p) = f . For all other letters, we stay in eij. For the state êij, we stay in êij for
all letters except p. For p, we set δ(êij, p) = s. We further create for 1 ≤ i ≤ k + 2

the states qi with the transitions δ(qi, v) = qi+1 for i ≤ k + 1 and v ∈ V , δ(qi, p) = qi

for i ≤ k, and δ(qk+1, p) = r, δ(qk+2, p) = s, δ(qk+2, v) = qk+2 for v ∈ V . We set
R := {(q1, r)} ∪ {(eij, êij) | eij ∈ E}.

If there exists a vertex cover of size k′ < k for G, then there also exists a vertex cover of
size k for G. Therefore, assume V ′ is a vertex cover for G of size k. Then, the word wpp
where w is any non-repeating listing of the vertices in V ′ is a synchronizing word for A
with R ⊆∝l≤lwpp@p. Since q1 cannot be reached from any other state, the pair (q1, r) ∈ R is

12

132 Synchronization under Dynamic Constraints

eij êij

...
...f s qk+2 qk+1 qk · · · q1

r
vi, vj

p p

p

pp

p

p

p

Figure 2: Schematic illustration of the reduction from Vertex cover (see Theorem 3).
For each state, the transition without a label represents all letters which are not explicitly
listed as an outgoing transition from that state.

trivially satisfied for each path starting in any state other than q1. Hence, we only have
to track the appearances of q1 and r on the path starting in q1. Since w lists the states
in the vertex cover V ′ it holds that |w| = k and hence q1.w = qk+1. Further, q1.wp = r

and q1.wpp = s. Hence, the pair (q1, r) is satisfied on the path starting in q1 as well as
on all paths. It remains to show that wpp is indeed a synchronizing word and that all
pairs in R of the form (eij, êij) are satisfied. For every state eij representing an edge eij,
the state êij is reached if we read a letter corresponding to a vertex incident to it. Since
V ′ is a vertex cover, the word w contains for each edge eij at least one vertex incident to
it. Hence, for each edge eij.w = êij and eij.wpp = s. Since each state eij is not reachable
from any other state it follows that all pairs (eij, êij) are satisfied by wpp on all paths.
It is easy to see that for all other states q ∈ Q it holds that q.wpp = s.

For the other direction, assume there exists a synchronizing word w for A with R ⊆∝l≤lw@p.
By the construction of A the word w must contain some letters p. Partition w into
w = upv where p does not appear in u. Since R ⊆∝l≤lw@p the pair (q1, r) in R enforces
|u| ≤ k since otherwise the only path on which q1 appears (namely the one starting in q1)
will not contain the state r as for any longer prefix u it holds that q1.u = qk+2 and r

is not reachable from qk+2. The other pairs of the form (eij, êij) ∈ R enforces that u
encodes a vertex cover for G. Assume this is not the case, then there is some state eij
for which eij.u = eij. But then, eij.up = f and from f the state êij is not reachable,
hence the pair (eij, êij) is not satisfied on the path starting in eij. Therefore, u encodes
a vertex cover of size at most k.

If we consider ∝l<lw@p, the two variants of the order (with and without position i = 0)
do not differ since for a pair (p, q), regardless of whether p is reached, the state q must
be reached on every path. Hence, whenever we leave q we must be able to return to
it, so it does not matter if we consider starting in q or not. In comparison with Sync-

Under-1 -∝l≤lw@p, the problem Sync-Under-∝l<lw@p is solvable in polynomial time using
non-determinism.

13

133

Theorem 4. The problem Sync-Under-∝l<lw@p is in NP.

Proof. Recall that in the problem Sync-Under-∝l<lw@p, for every pair of states (p, q) ∈ R
and every state r ∈ Q, it is demanded that q appears somewhere on a path induced by
the sought synchronizing word w, starting in r. Hence, a precondition for the existence
of w is that for every pair (pi, qi) ∈ R the states qi must be reachable from any state in Q.
More precisely, under the order ∝l<lw@p only the last appearance of each state on a path
is taken into account. Hence, a prohibited visit of a state can later be compensated by
revisiting all related states in the correct order. Thus, it is sufficient to first synchronize
all pairs of states and then transition the remaining state through all related states in the
demanded order. The next Lemma 1 proves this claim and shows that these properties
can be checked in non-deterministic polynomial time.

Lemma 1. Let A = (Q,Σ, δ) be a DCA and let R ⊆ Q2. The automaton A is synchro-
nizable by a word w ∈ Σ∗ with R ⊆∝l<lw@p if and only if the following holds:
(1) For every pair of states qi, qj ∈ Q, there exists a word wij such that qi.wij = qj.wij.
(2) For every state r ∈ Q, there exists a word wr such that if we consider ∝l<lw@p only on
the path induced by wr, which starts in r, it holds that p ∝l<lwr@p

q for every pair (p, q) ∈ R.

Conditions (1) and (2) can be proved in polynomial time using non-determinism.

Proof. Assume A can be synchronized by a word w ∈ Σ∗ such that R ⊆∝l<lw@p. Then,
|Q.w| = 1 and hence also |{qi, qj}.w| = 1 for every qi, qj ∈ Q. Since R ⊆∝l<lw@p the
condition (2) already holds by definition on every path induced by w.

For the other direction, assume condition (1) and (2) hold. Then, we can construct a
synchronizing word w = wpwr with R ⊆∝l<lw@p in the following way: Start with wp = ε

and the set of active states Qact := Q.

Step 1: If |Qact| = 1 continue with Step 2, otherwise pick two arbitrary states qi, qj ∈
Qact. Set wp := wpwij and update Qact := Qact.wij. Repeat this step.
Step 2: We now have Qact = {r} for some state r ∈ Q. Return wpwr.

The algorithm terminates after at most n = |Q| repetitions of Step 1 since by condi-
tion (1) in each iteration at least two states are merged. Obviously wpwr is synchronizing
for A. Further, condition (2) gives us that for every pair of states (p, q) ∈ R the last
appearance of q is on the path τ induced by wr starting in r. This path appears on every
path starting in any state s ∈ Q as a suffix, because of s.wp = r. Since for p ∝l<lw@p q the
order ∝l<lw@p only considers the last appearance of q it follows that R ⊆∝l<lwr@p

since every
pair in R holds on the path τ .

14

134 Synchronization under Dynamic Constraints

The words wij in (1) can be found by determining reachability in the squared automaton
A×A from the state (qi, qj) to any singleton state1. The words wr in (2) can be computed
in polynomial time using non-determinism. Let B := {q ∈ Q | ∃p ∈ Q : (p, q) ∈ R} be
the set of all second components of pairs in R with m = |B|. We guess an ordering
qi1 , qi2 , . . . , qim of the states in B corresponding to the last appearances of them on the
path starting in r, induced by wr. We compute the word wr in the following way, starting
with wr = ε:

Step 1: Check whether qi1 is reachable from r by some word v using breadth-first
search. If so, delete all states p with (p, qi1) ∈ R from A and set wr := v, otherwise
return false.
Step 2: For each k with 1 ≤ k < m, check whether qik+1

is reachable from qik by some
word vk using breadth-first search. If so, delete all states p with (p, qik+1

) ∈ R from A

and set wr := wrvk, otherwise return false.
Step 3: Return wr.

If we guessed correctly, the algorithm returns a word wr that satisfies condition (2).

Remark 3. The NP-hardness proof for Sync-Under-0 -∝l≤lw@p in Theorem 3 and the NP-
membership proof for Sync-Under-∝l<lw@p in Theorem 4 do not work for the respectively
other problem since concerning ∝l<lw@p the larger states need to be reached on every path
and not only on a path containing the corresponding smaller state as it is the case
concerning ∝l≤lw@p.

Theorem 5. The problem Sync-Under-0 -∝l<fw@p is PSPACE-complete.

Proof sketch. We reduce from Careful Sync. As in the proof of Theorem 2 we take
every undefined transition δ(q, σ) to the new state q�. We further enrich the alphabet
by a letter c and use c to take q� into Q. We use the relation R and extra states r, s to
enforce that c is the first letter of any synchronizing word, and that afterwards q� is not
reached again.

Proof. We give a reduction from the problem Careful Sync. Let A = (Q,Σ, δ) be
a DPA with c /∈ Σ. We construct from A the DCA A′ = (Q′,Σ ∪ {c}, δ′) where Q′ =

Q ∪ {q�, r, s} with Q ∩ {q�, r, s} = ∅. For every undefined transition δ(q, σ) with q ∈ Q,
σ ∈ Σ in A, we define the transition δ′(q, σ) = q� in A′. We set δ′(q, c) = q for q ∈ Q
and for some state t in Q we set δ(q�, c) = δ′(r, c) = δ′(s, c) = t. For all other letters
γ ∈ Σ, we set δ′(q�, γ) = q� and δ′(r, γ) = δ′(s, γ) = s. On all other transitions δ′ agrees
with δ. We set the relation R to R := {(s, r)} ∪ {q�} ×Q.

1For more details see the algorithm in [Eppstein, 1990] which solves general synchronizability of a
DCA in polynomial time.

15

135

Assume there exists a word w ∈ Σ∗, |w| = n that synchronizes A without using an
undefined transition, then cw synchronizes A′ and R ⊆∝l<fcw@p. In the automaton A′ the
letter c transitions the state set {q�, r, s} into Q. As c is the identity on the states in Q,
we have δ′(Q′, c) = Q. Since δ′ agrees with δ on all defined transitions of δ and δ(q, w)

is by assumption defined for all states q ∈ Q we have δ′(Q′, cw) = δ(Q,w) = {p} for
some state p ∈ Q and δ′(Q′, cw[1..i]) ⊆ Q for all i ≤ |w|. It remains to show that R is
consistent with ∝l<fcw@p. As q� is left with the prefix c and is not reached while reading w
the subset {q�} × Q of R is fulfilled. The prefix c also causes the states r and s to
transition into the state t (instead of s), and since s is not reachable from Q it is not the
case that s appears after r on any path induced by cw.

For the other direction, assume there exists a word w that synchronizes A′ with R ⊆
∝l<fw@p. As (s, r) ∈ R the path induced by w which starts in r must not contain the state s.
Hence, the first symbol of w must be the letter c as otherwise r transitions into s. As
δ′(Q′, c) = Q all path labeled with c, starting in a state in Q′, end in a state in Q. For
every state q ∈ Q, (q�, q) is contained in R. Hence, q� must not appear on a paths
labeled with w starting in a state in Q′ after reading the first letter c of w. This means
that the word w[2..|w|] synchronizes the state set Q in the automaton A′ without leaving
the state set Q or using a transition which is undefined in A. Since δ′ agrees with δ on
all defined δ-transitions, w[2..|w|] carefully synchronizes the state set Q in A.

Remark 4. In the presented way, the reduction relies on taking the initial configuration
at position i = 0 into account but we can adapt the construction to prove PSPACE-
completeness of Sync-Under-1 -∝l<fw@p by copying every state in Q and the state r.
Denote a copy of a state q with q′. Then, for each letter σ, we set δ′(q′, σ) = q, for any
copied state including r′. Note that the copied states are not reachable from any state.
Now, after the first transition w[1] (which can be arbitrary), we have a similar situation
as previously considered for w[0]. The state r is active and forces the next letter to be
the letter c; all states in Q are active; reading the letter c will cause all states qσ to be
left and never be reached again.

In the above reduction from Careful Sync the size of R depends on |Q|. Hence, the
question whether Sync-Under-∝l<fw@p is PSPACE-hard for |R| = 1 is an interesting topic
for further research. We will now see that when R is a strict and total order on Q,
the problem of synchronizing under ∝l<fw@p (a.k.a. Sync-Under-Total-∝l<fw@p) becomes
tractable.

Theorem 6. Let A = (Q,Σ, δ), R be an instance of Sync-Under-Total-∝l<fw@p. A
shortest synchronizing word w for A with R ⊆∝l<fw@p has length |w| ≤ |Q|(|Q|−1)

2
+ 1.

Proof. The relation R implies a unique ordering σ of the states in Q. We put a token

16

136 Synchronization under Dynamic Constraints

in every state which will be moved by applications of letters and think of active states
as states containing a token. In the problem variant Sync-Under-Total-1 -∝l<fw@p the
tokens can be moved anywhere in the first step but afterwards - and in the variant Sync-

Under-Total-0 -∝l<fw@p - the tokens can only move to bigger states concerning σ. Each
letter should move at least one token and the tokens in the |Q| states can only be moved
0, 1, 2, . . . , |Q| − 1 times, giving a total length bound of |Q|(|Q|−1)

2
+ 1 for Sync-Under-

Total-1 -∝l<fw@p and
|Q|(|Q|−1)

2
for Sync-Under-Total-0 -∝l<fw@p.

Note that this length bound is smaller than the bound of the Černý conjecture for
|Q| > 3 [Černý, 1964, Cerný, 2019]. The same bound can be obtained for Subset-Sync-

Under-Total-∝l<fw@p. We will now prove that the problem Sync-Under-Total-0 -

∝l<fw@p is equivalent – concerning polynomial time many-one-reductions (depicted by ≡p) –
to the problem of carefully synchronizing a partial weakly acyclic automaton (PWAA) (a
PWAA is a WAA where δ might be only partially defined). The obtained length bound
also holds for PWAAs, which is only a quadratic increase w.r.t. the linear length bound
in the complete case [Ryzhikov, 2019].

Theorem 7. Sync-Under-Total-0 -∝l<fw@p ≡p Careful Sync of PWAAs.

Proof. We prove this statement by reducing the two problems to each other. Let A =

(Q,Σ, δ), R ⊆ Q2 be an instance of Sync-Under-Total-0 -∝l<fw@p. Since R is a strict
total order on Q, we can order the states according to R. We construct from A the
PWAA A′ = (Q,Σ, δ′) by removing all transitions in δ which are leading backwards in
the order. Clearly, A′ is carefully synchronizable if and only if A is synchronizable with
respect to R.

For the other reduction, assume A = (Q,Σ, δ) is a PWAA. Then, we can order the states
in Q such that no transition leads to a smaller state. We are constructing from A the
DCA A′ = (Q ∪ {q<},Σ, δ′) and insert q< as the smallest state in the state ordering.
Then, we define in δ′ all transitions (q, σ) for q ∈ Q, σ ∈ Σ which are undefined in δ

as δ′(q, σ) = q<. We take the state q< with every symbol to the maximal state in the
order. Note that the maximal state needs to be the synchronizing state if one exists.
We set R = {(p, q) | p < q in the state ordering of Q in A} ∪ {(q<, q) | q ∈ Q}. Every
undefined transition (p, σ) in A is not allowed in A′ at any time, since otherwise the pair
(q<, p) ∈ R would be violated. The state q< itself can reach the synchronizing state with
any transition. Hence, A′ is synchronizable with respect to R if and only if A is carefully
synchronizable.

Remarks on the length bound of synchronizing words for PWAAs: In the reduction
from Careful Sync of PWAAs to Sync-Under-Total-0 -∝l<fw@p the state set is only

17

137

increased by one additional state q<. As this state is not reachable from any other state
(as otherwise the order would be violated) and is left into the largest state, w.r.t. the
constructed order, with every letter, this state does not contribute to the length of a
potential synchronizing word if the number of states is >1. As for all other states,
the allowed transitions in the DCA act in the same way as they do in the PWAA, the
length bound of a synchronizing word for DCAs w.r.t. Sync-Under-Total-0 -∝l<fw@p

translates to a length bound of a carefully synchronizing word for PWAAs. This is quite
surprising as in general shortest carefully synchronizing words have an exponential lower
bound [Martyugin, 2012]. Further, we show that careful synchronization for PWAAs is
in P while the problem is PSPACE-complete for general DPAs even if only one transition
is undefined [Martyugin, 2012].

Corollary 2. For every PWAA A = (Q,Σ, δ), a shortest word w carefully synchronizing
A has length |w| ≤ |Q|(|Q|−1)

2
.

We can generalize the length bound obtained in the case when R is a total order on the
whole state set to the case that R is only total for a subset of states.

Theorem 8. Let A = (Q,Σ, δ), R ⊆ Q2 with n = |Q|. Let Q1 ⊆ Q be such that
R restricted to Q1 × Q1 is a strict and total order. Let p = |Q| − |Q1|. For Sync-

Under-∝l<fw@p: If A is synchronizable by a shortest word w with R ⊆∝l<fw@p, then: |w| ≤
(n(n−1)

2
+ 1) · 2p.

Proof. As before, the states in the setQ1 can be ordered according toR and might only be
traversed in this order. For every transition of a state in Q1, in the worst case all possible
combinations of active states in Q\Q1 might be traversed (once) yielding 2p transitions
with identical active states in Q1 between two transitions of any state in Q1.

We now present an O(|Σ|2|Q|2) algorithm for Sync-Under-Total-0 -∝l<fw@p. The idea
is the following: First, we delete all transitions that violate the state order. Then, we
start on all states as the set of active states and pick a letter, which is defined on all
active states and maps at least one active state to a larger state in the order R. We
collect the sequence u of applied letters and after each step, we apply the whole sequence
u on the set of active states. This is possible as we already know that u is defined on
Q. We thereby ensure that a state which has become inactive after some iteration never
becomes active again after an iteration step and hence Σdef grows in each step and never
shrinks. While a greedy algorithm which does not store u runs in O(|Σ||Q|3), with this
trick we get a running time of O(|Σ|2|Q|2). As in practice |Q| � |Σ| this is a remarkable
improvement. Note that we can store u compactly by only keeping the map induced by

18

138 Synchronization under Dynamic Constraints

the current u and storing the sequence of letters σ from which we can restore the value
of u in each iteration.

Greedy algorithm for Sync-Under-Total-0 -∝l<fw@p Let A = (Q,Σ, δ) be a DCA with
|Q| = n and |Σ| = m, and let R ⊆ Q×Q be a total order. We sketch an O(mn3) greedy
algorithm which computes a synchronizing word w for A with R ⊆∝l<fw@p.

First, order the set Q according to R. Delete all transitions in A which are leading
backwards in the state-ordering obtaining the DPA A′. Set Q1 = Q, w1 = ε.

At each step i: Check if |Qi| = 1, if so return yes and the word wi. Otherwise, compute
Σi = {σ ∈ Σ | q.σ is defined for all q ∈ Qi}. Test if there is at least one letter σ ∈ Σi that
maps a state in Qi to a larger state. If so, apply this letter to Qi, obtaining Qi+1 = Qi.σ,
set wi+1 = wiσ, and continue with the next step. If there is no such letter σ, return no.

By Theorem 7 there exists a synchronizing word w for A with R ⊆∝l<fw@p if and only
if there exists a carefully synchronizing word w for A′. Observe that if A′ is carefully
synchronizing, then every subset of Q can be synchronized. Hence, if A′ is carefully
synchronizing, then for every subset S ⊆ Q there exists a letter σ which is defined on all
states in S and maps at least one state in S to a larger state. Hence, the algorithm will
find a carefully synchronizing word and terminate.

Conversely, if the algorithm returns no, the set Qi of active states at the last step is
a witness proving that A′ is not carefully synchronizing, since no letter can map this
subset to a different one, and thus Q cannot be synchronized.

The preprocessing of the algorithm takes time O(n log n + mn). Each step of the algo-
rithm takes time O(mn). The maximum number of steps is O(n2), since at each step
we move a token on the active states according to a total order by at least one. Hence,
the total running time is O(mn3).

Theorem 9. Sync-Under-Total-0 -∝l<fw@p is solvable in quadratic time.

Proof. Let A = (Q,Σ, δ) be a DCA, and let R ⊆ Q2 be a strict and total order on Q.
Figure 3 describes an algorithm that decides in time O(|Σ|2|Q|2) whether A is synchro-
nizable with respect to R under the order ∝l<fw@p (including position i = 0) on paths.
Despite the simplicity of the algorithm its correctness is not trivial and is proven in the
following lemmas.

Lemma 2. The algorithm in Figure 3 terminates on every input A = (Q,Σ, δ) with
m = |Σ|, n = |Q|, strict and total order R ⊆ |Q|2 in time O(m2n2).

19

139

Step 1: Order all states in Q according to the order R. Since R is strict and total the
states can be ordered in an array {q1, q2, . . . , qn}.
Step 2: Delete in the automaton A all transitions which are leading backwards in the
state-ordering. If this produces a state with no outgoing arc, abort; return false.
Step 3: Let qn be the maximal state according to the order R. Delete all transitions
in A which are labeled with letters σ ∈ Σ for which qn.σ is undefined. If this produces
a state with no outgoing transition, abort and return false.
Step 4: Partition the alphabet Σ into Σdef, consisting of all letters σ ∈ Σ for which
q.σ is defined for all states q ∈ Q, and Σpar := Σ\Σdef. If Σdef = ∅ abort; return false.
Step 5: Compute explore(Q,Q,Σdef, ε) which returnsQact and u ∈ Σ∗def. The returned
set of active states will equate Qtrap = {q ∈ Q | q.Σdef = q}.
Step 6: Set Σdef := Σdef ∪ {σ ∈ Σpar | q.σ is defined for all q ∈ Qact}.
Compute explore(Q,Qact,Σdef, u) which returns Q′act and u′ ∈ Σ∗def.
Set Qact := Q′act, u := u′, Σpar := Σ\Σdef.
Repeat this step until Qact does not change anymore (≡ to Σdef does not change any-
more).
Then, if Qact = {qn} return true, otherwise return false.
Procedure explore: Input: Ordered state set Q, set of active states Qact, alphabet
Σexp to be explored, word u with Q.u = Qact.
Initialize a new word u′ := u.
Go through the active states in order. For the current state q, test if any σ ∈ Σdef leads
to a larger state, if so, perform the transition σu on all active states and update the
set of active states Qact. Concatenate u′ with σu. Continue with the next larger active
state (not that this can be q.σu). If qn is reached, return u′, and the current set of
active states Qact.

Figure 3: Polynomial time algorithm for Sync-Under-Total-0 -∝l<fw@p on the input
A = (Q,Σ, δ), R ⊆ Q2.

Proof. Step 1 can be performed in time O(n log n) using the Quicksort-algorithm. Step 2
to Step 5 take time O(mn) each. The procedure explore takes time O(mn2). The
number of iterations in Step 6 is bounded by |Σpart| as Σdef is applied exhaustively on
Qact and by invariant (2) of Lemma 3 we have Q′act ⊆ Qact, This yields a total run-time
of O(m2n2).

Lemma 3. If the algorithm in Figure 3 returns true on the input A = (Q,Σ, δ), strict
and total order R ⊆ |Q|2, then A, R is a yes instance of Sync-Under-Total-0 -∝l<fw@p.

Proof. For the procedure explore, the following invariant holds: Let uold be the word u
before the execution of explore and let unew be the one after the execution of explore.
Then, it holds for all executions of explore that (1) Q.unew is defined, (2) Q.unew ⊆
Q.uold, and (3) Q.unewunew = Q.unew. We prove the invariant by induction. First, note
that the word u computed by explore in Step 5 is defined on all states in Q since it only
consists of letters which are defined on all states. Since we go through the states in order
during the execution of explore and we only proceed with the next larger state if (1)

20

140 Synchronization under Dynamic Constraints

we where able to leave the current one towards a larger state or if (2) the current state
cannot be left with any of the letters in Σdef, it holds that Q.uu = Q.u. Also, trivially
Q.u ⊆ Q.

Next, consider some later execution of explore. The new word computed by explore

is of the form unew := uoldσ1uoldσ2uold . . . σiuold for some 0 ≤ i ≤ |Q|. The induction
hypothesis tells us that (1) Q.uold is defined. Since Q.uoldσ1 is defined (since σ1 ∈ Σdef)
and Q.uoldσ1 ⊆ Q it holds that Q.uoldσ1uold is defined. Further, since uold brings all states
to the set Q.uold it also brings a subset of Q to a subset of Q.uold. Using the induction
hypothesis (3) we get by an induction on i that Q.unew is defined and Q.unew ⊆ Q.uold.
Since in the execution of explore we only proceed with the next larger state if we
exhaustively checked all possible transitions for the current state and since Q.uolduold =

Q.uold it follows that Q.unewunew = Q.unew.

If the algorithm in the proof of Theorem 9 terminates and returns yes, it also returns
a synchronizing word u. By the invariant proven above, we know that Q.u is defined.
This means that u never causes a transition of a larger state to a smaller state and
hence ∝l<fu@p agrees with R. During the execution of the algorithm we track the set of
active states Qact (starting with Q) and only return true if Qact contains only the in R
largest state qn. Since R is a total order, every q ∈ Q is smaller than qn and hence qn
cannot be left. Therefore, qn needs to be the single synchronizing state of A and u is a
synchronizing word for A.

Lemma 4. If the algorithm in Figure 3 returns false on the input A = (Q,Σ, δ) and a
strict and total order R ⊆ |Q|2, then A is not synchronizable under the order ∝l<fw@p with
respect to the input order R .

Proof. The algorithm returns false in the following cases.

(1) All outgoing transitions of some state q are deleted in Step 2. In that case, every
transition of q leads to a smaller state. As this would violate the order R, we cannot
perform any of those transitions. Hence, q cannot be left. (The case that q = qn is
treated in (2).)

(2) Since qn is the largest state, it cannot be left. Hence, qn will be active the whole
time. Therefore, any transition which is not defined for qn cannot be taken at all since qn
is active during the whole synchronizing process. Hence, we can delete these transitions
globally. If this creates a state which cannot be left anymore, this state cannot be
synchronized.

(3) The execution of explore returns two identical sets of active states Qact in a row.

21

141

Let Σdef be the explored alphabet of the last execution of explore. Then, Σdef contains
all letters σ from Σ for which q.σ is defined on all states q ∈ Qact and none of them leads
some state in Qact to a larger state. Since the relation R forbids cycles, for all σ ∈ Σdef

and all q ∈ Qact q.σ = q and hence this set cannot be left when all states of the set are
active simultaneously. Since all states are active at the beginning of the algorithm, also
all states in Qact are active and since this set cannot be left with any transition which
does not cause an undefined transition for all states in the set, the state set cannot be
synchronized at all.

Corollary 3. The careful synchronization problem for PWAA is in P.

If we allow one unrestricted transition first (Sync-Under-Total-1 -∝l<fw@p) the prob-
lem is related to the subset synchronization problem of complete WAAs which is NP-
complete [Ryzhikov, 2019]. Together with the quadratic length bound of a synchronizing
word of Sync-Under-Total-1 -∝l<fw@p (which implies membership of Sync-Under-

Total-1 -∝l<fw@p in NP), we get:

Theorem 10. The problem Sync-Under-Total-1 -∝l<fw@p is NP-complete.

Proof. We reduce from the NP-complete problem: Given a complete weakly acyclic
automaton A = (Q,Σ, δ) and a subset S ⊆ Q, does there exist word w ∈ Σ∗ such that
|S.w| = 1. We construct from A an automaton A′ = (Q′,Σ ∪ {c}, δ′) with c /∈ Σ in the
following way. A schematic illustration of the construction is depicted in Figure 4. We
start with Q′ = Q. W.l.o.g., assume |S| ≥ 2. For each state q ∈ S, we add a copy q̂
to Q′. Further, we add the states q< and q>. Let q1, q2, . . . , qn be an ordering of the
states in Q such that δ follows this ordering. The transition function δ′ agrees with δ on
all states in Q and letters in Σ. For a copied state q̂, we set δ′(q̂, σ) = q̂ for all σ ∈ Σ

and δ′(q̂, c) = q. For every state q ∈ Q, we set δ′(q, c) = q<. Let qs be some state
in S. Then for all σ ∈ Σ we set δ′(q<, σ) = δ(qs, σ), δ′(q<, c) = qs and δ′(q>, σ) = q>,
δ′(q>, c) = qs. Then, we set R = {(qi, qj) | i < j} for all states in Q. Further, for every
copied state q̂k we extend R by the sets: {(q̂k, qk)}, {(qi, q̂k), (q̂k, qj) | i < k, k < j}, and
{(q̂i, q̂k), (q̂k, q̂j) | i < k < j} for all copied states q̂i, q̂j. For the states q<, q>, we add
{(q<, q) | q 6= q< ∈ Q′} and {(q, q>) | q 6= q> ∈ Q′} to R.

Assume, w ∈ Σ∗ synchronizes the set S in A. W.l.o.g., assume w 6= ε. Then, cw
synchronizes the automaton A′ such that R ⊆∝l<fw@p (where position i = 0 is not taken
into account). We have in A′ that Q′.c = S ∪ {q<}. Since the initial configuration is not
taken into account all transitions are allowed as the first letter of a synchronizing word
and hence R ⊆∝l<fc@p. From now on, no transition which leads backwards in the order is
allowed. We constructed R such that for the states in Q all transitions inherited from δ

22

142 Synchronization under Dynamic Constraints

q< q1 q2 q3 q4 · · · qn q>

q̂2 q̂4

c
c c c c

c
Σ

c

Σ

Σ Σ

c c
Σ

Figure 4: Schematic illustration of the reduction from the subset synchronization problem
for complete weakly acyclic automata (see Theorem 10). In this example, the subset S
contains the states q2 and q4, we picked qs = q2. Transitions inherited from the original
automaton A are not drawn except for the transitions from q2, for illustration they were
assumed to lead to q3.

are valid at any time. Since w ∈ Σ∗, all transitions induced by w are valid for states in
Q in A′. The only active state outside of Q is q< which mimics transitions of the active
state qs with the next letter w[1] ∈ Σ and hence qs and q< are synchronized in the next
step. Note that with any word from Σ∗ no state outside of Q is reachable from a state
in Q. Hence, Q′.cw = S.w.

For the other direction, assume w ∈ Σ′∗ synchronizes A′ and R ⊆∝l<fw@p (where position
i = 0 is not taken into account). Then, the first letter of w needs to be the letter c.
Otherwise, the state q> stays in q>. This state cannot be left later anymore since after
the first transition the pair (qs, q>) in R is active and forbids a transition out of q>. As the
state q> cannot be reached from any other state we caused an active non-synchronizing
trap-state.

For the letter c, we have Q′.c = S ∪ {q<}. After the first transition for all active states
in Q, the transition by letter c is not allowed anymore as it would yield the states to
reach the state q< which is smaller than any state in Q. For all letters σ 6= c, the state q<
simulates the active state qs and hence synchronizes with it with the letter w[2]. Starting
from Q we stay in Q with all σ ∈ Σ and simulate the automaton A. Hence, any word
that synchronizes the set S ∪ {q<} in A′ also synchronizes the set S in A.

Theorem 11. Subset-Sync-Under-Total-∝l<fw@p is NP-complete.

Proof. By Theorem 7 we know that the automata – which are synchronizable under the
constraint formulated in Sync-Under-Total-0 -∝l<fw@p – are precisely the synchroniz-
able weakly acyclic automata. Since every complete weakly acyclic automaton (CWAA)
is also a PWAA the NP-hardness of the subset synchronization problem for CWAAs
transfers to the problem Subset-Sync-Under-Total-0 -∝l<fw@p in our setting. Since the

23

143

problem Sync-Under-Total-1 -∝l<fw@p is already NP-hard it follows by setting S := Q

that Subset-Sync-Under-Total-1 -∝l<fw@p is also NP-hard. The length bound ob-
tained in Theorem 6 also holds for a shortest word w synchronizing a subset S with
w ∈∝l<fw@p if R is a strict and total order. This gives membership in NP as we can guess
the synchronizing word.

Corollary 4. Let A = (Q,Σ, δ) with n = |Q|, S ⊆ Q, and R ⊆ Q2 be a strict and total
order on Q. If S is synchronizable in A by a shortest word w such that R ⊆∝l<fw@p, then
|w| ≤ n(n−1)

2
+ 1 for Subset-Sync-Under-Total-∝l<fw@p.

Theorem 12. The following subset synchronization problems are PSPACE-complete for
both -0 - and -1 -: Subset-Sync-Under-∝l<lw@s, -∝l<lw@p, -∝l≤lw@s, -∝l≤lw@p, -∝l<fw@p.

Proof. For the mentioned orders, the subset synchronization problem is trivially PSPACE-
hard which can be observed by setting R = ∅. In order to show membership in PSPACE,
the start states in the considered powerset-construction in Theorem 1 can be adapted to
check reachability from the start configuration where exactly the subset S is active to
some final state using polynomial space.

Several other results can be transferred from [Ryzhikov, 2019] to the corresponding
version of the Sync-Under-Total-0 -∝l<fw@p problem, such as inapproximability of the
problems of finding a shortest synchronizing word; a synchronizing set of maximal size
(here also W[1]-hardness can be observed); or determining the rank of a given set. Fur-
ther, by the observation (in [Ryzhikov, 2019]) that, in the construction given in [Rystsov,
1980, Eppstein, 1990] the automata are WAAs, we immediately get NP-hardness for find-
ing a shortest synchronizing word for all of our orders (for order l < l and l ≤ l set R = ∅).

Corollary 5. For all considered orders lw, the problem given a DCA A = (Q,Σ, δ),
k ∈ N, R ∈ Q2, if there exist a synchronizing word w ∈ Σ∗ with |w| ≤ k and R ⊆ lw is
NP-hard.

5 Transferred Results

In [Ryzhikov, 2019] weakly acyclic automata are considered, which are complete deter-
ministic automata for which the states can be ordered such that no transitions leads to a
smaller state in the order. We proved in Theorem 7 that the class of automata considered
in Sync-Under-Total-0 -∝l<fw@p is equivalent to the class of partial weakly acyclic au-
tomata (PWAA). In [Ryzhikov, 2019] the corresponding class of complete weakly acyclic

24

144 Synchronization under Dynamic Constraints

automata is investigated and several hardness results are obtained for different syn-
chronization problems concerning this class of automata. Since complete weakly acyclic
automata are a subclass of partial weakly acyclic automata the obtained hardness results
easily transfer into our setting. Note that in [Ryzhikov, 2019] the approximation results
are measured in n = |Q| and not in the size of the input. Hence, the results can be
directly transferred despite the fact that in the problem Sync-Under-Total-0 -∝l<fw@p

the input is extended to include the set R of size |Q|2. We refer to the decision variant of
an optimization problem by the extension -D in its name. The following results transfer
from [Ryzhikov, 2019]:

Definition 11 (Short-Sync-Word-Total-0 -∝l<fw@p). Given a DCA A = (Q,Σ, δ),
and a strict and total order R ⊆ Q2. Output the length of a shortest word w such that
|Q.w| = 1 and R ⊆∝l<fw@p.

Corollary 6. The problem Short-Sync-Word-Total-0 -∝l<fw@p for n-state binary au-
tomata cannot be approximated in polynomial time within a factor of O(n

1
2
−ε) for any

ε > 0 unless P = NP.

Definition 12 (Max-Sync-Set-Total-0 -∝l<fw@p). Given a DCA A = (Q,Σ, δ), and a
strict and total order R ⊆ Q2. Output a set S ⊆ Q of maximum size such that |S.w| = 1

and R ⊆∝l<fw@p.

Corollary 7. The problem Max-Sync-Set-Total-0 -∝l<fw@p for n-state automata over
an alphabet of cardinality O(n) cannot be approximated in polynomial time within a
factor of O(n1−ε) for any ε > 0 unless P = NP.

Corollary 8. The problem Max-Sync-Set-Total-0 -∝l<fw@p for binary n-state automata
cannot be approximated in polynomial time within a factor of O(n

1
3
−ε) for any ε > 0 un-

less P = NP.

Observing the reductions given in [Ryzhikov, 2019] to obtain the above transferred in-
approximability results, we also conclude the following hardness results concerning the
parameterized complexity class W[1].

Corollary 9. The problem Max-Sync-Set-Total-0 -∝l<fw@p-D is W[1]-hard with the
parameter k being the given size bound on the set S in the decision variant of the problem.

Definition 13 (Set-Rank-Total-0 -∝l<fw@p). Given a DCA A = (Q,Σ, δ), a subset
S ⊆ Q and a strict and total order R ⊆ Q2. Output the rank of S in A under ∝l<fw@p,
that is the size of a smallest set S ′ such that there exists a word w with S.w = S ′ and
R ⊆∝l<fw@p.

25

145

Corollary 10. The problem Set-Rank-Total-0 -∝l<fw@p for n-state automata with al-
phabet of size O(

√
n) cannot be approximated within a factor of O(n

1
2
−ε) for any ε > 0

unless P = NP.

Corollary 11. The problem Set-Rank-Total-0 -∝l<fw@p for n-state binary automata
cannot be approximated within a factor of O(n

1
3
−ε) for any ε > 0 unless P = NP.

Definition 14 (Sync-Into-Subset-0 -∝l<fw@p). Given a DCA A = (Q,Σ, δ), a subset
S ⊆ Q and a strict and total order R ⊆ Q2. Does there exist a word w with Q.w = S

and R ⊆∝l<fw@p.

Corollary 12. The problem Sync-Into-Subset-0 -∝l<fw@p is NP-hard.

6 Conclusion

We discussed ideas how constraints for the design of assembly lines caused by the physical
deformation of a part can be described in terms of synchronization problems. For that,
we considered several ways how a word can imply an order of states in Q. We considered
the complexity of synchronizing an automaton under different variants of orders and
observed that the complexity of considering an order on the set of active states may
differ from considering the order on each single path. Although we were able to get a
good understanding of the complexity of synchronization under the considered orders,
some questions remained open: We only know that Sync-Under-∝l<lw@p is contained
in NP but it is open whether the problem is NP-complete or if it can be solved in
polynomial time. Conversely, for Sync-Under-0 -∝l≤lw@p the problem is NP-hard but
its precise complexity is unknown. It would be quite surprising to observe membership
in NP here since it would separate the complexity of this problem from the closely related
problem Sync-Under-1 -∝l≤lw@p. Further, it remains open whether for the other orders
a drop in the complexity can be observed, when R is strict and total, as it is the case
for ∝l<fw@p.

References

[Ananichev and Volkov, 2004] Ananichev, D. S. and Volkov, M. V. (2004). Synchroniz-
ing monotonic automata. Theoretical Computer Science, 327(3):225–239.

[Ausiello et al., 1999] Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G.,
Crescenzi, P., and Kann, V. (1999). Complexity and Approximation: Combinatorial

26

146 Synchronization under Dynamic Constraints

Optimization Problems and Their Approximability Properties. Springer-Verlag, Berlin,
Heidelberg, 1st edition.

[Béal and Perrin, 2016] Béal, M.-P. and Perrin, D. (2016). Synchronised Automata, page
213–240. Encyclopedia of Mathematics and its Applications. Cambridge University
Press.

[Bruchertseifer and Fernau, 2019] Bruchertseifer, J. and Fernau, H. (2019). Synchroniz-
ing series-parallel automata with loops. In Freund, R., Holzer, M., and Sempere, J. M.,
editors, Eleventh Workshop on Non-Classical Models of Automata and Applications,
NCMA 2019, Valencia, Spain, July 2-3, 2019., pages 63–78. Österreichische Computer
Gesellschaft.

[Černý, 1964] Černý, J. (1964). Poznámka k homogénnym eksperimentom s konečnými
automatami. Matematicko-fyzikalny Časopis Slovensk, 14(3):208–215.

[Cerný, 2019] Cerný, J. (2019). A note on homogeneous experiments with finite au-
tomata. Journal of Automata, Languages and Combinatorics, 24(2-4):123–132.

[Chang et al., 1992] Chang, E. Y., Manna, Z., and Pnueli, A. (1992). Characterization
of temporal property classes. In Kuich, W., editor, Automata, Languages and Pro-
gramming, 19th International Colloquium, ICALP92, Vienna, Austria, July 13-17,
1992, Proceedings, volume 623 of Lecture Notes in Computer Science, pages 474–486.
Springer.

[Chatterjee and Doyen, 2016] Chatterjee, K. and Doyen, L. (2016). Computation tree
logic for synchronization properties. In Chatzigiannakis, I., Mitzenmacher, M., Ra-
bani, Y., and Sangiorgi, D., editors, 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 98:1–98:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Cygan et al., 2015] Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D.,
Pilipczuk, M., Pilipczuk, M., and Saurabh, S. (2015). Parameterized Algorithms.
Springer.

[Doyen et al., 2014] Doyen, L., Juhl, L., Larsen, K. G., Markey, N., and Shirmoham-
madi, M. (2014). Synchronizing words for weighted and timed automata. In Raman,
V. and Suresh, S. P., editors, 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014,
New Delhi, India, volume 29 of LIPIcs, pages 121–132. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik.

[Eppstein, 1990] Eppstein, D. (1990). Reset sequences for monotonic automata. SIAM
Journal on Computing, 19(3):500–510.

27

147

[Fernau et al., 2019] Fernau, H., Gusev, V. V., Hoffmann, S., Holzer, M., Volkov, M. V.,
and Wolf, P. (2019). Computational complexity of synchronization under regular con-
straints. In Rossmanith, P., Heggernes, P., and Katoen, J., editors, 44th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2019, Au-
gust 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 63:1–63:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[Fernau et al., 2015] Fernau, H., Heggernes, P., and Villanger, Y. (2015). A multi-
parameter analysis of hard problems on deterministic finite automata. Journal of
Computer and System Sciences, 81(4):747–765.

[Imreh and Steinby, 1999] Imreh, B. and Steinby, M. (1999). Directable nondeterministic
automata. Acta Cybernetica, 14(1):105–115.

[Manna and Pnueli, 1990] Manna, Z. and Pnueli, A. (1990). A hierarchy of temporal
properties. In Dwork, C., editor, Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, Quebec City, Quebec, Canada, August 22-24,
1990, pages 377–410. ACM.

[Martyugin, 2014] Martyugin, P. (2014). Computational complexity of certain problems
related to carefully synchronizing words for partial automata and directing words for
nondeterministic automata. Theory of Computing Systems, 54(2):293–304.

[Martyugin, 2012] Martyugin, P. V. (2012). Synchronization of automata with one un-
defined or ambiguous transition. In Moreira, N. and Reis, R., editors, Implementation
and Application of Automata - 17th International Conference, CIAA 2012, Porto,
Portugal, July 17-20, 2012. Proceedings, volume 7381 of Lecture Notes in Computer
Science, pages 278–288. Springer.

[Natarajan, 1986] Natarajan, B. K. (1986). An algorithmic approach to the automated
design of parts orienters. In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 132–142. IEEE Computer So-
ciety.

[Rystsov, 1980] Rystsov, I. K. (1980). On minimizing the length of synchronizing words
for finite automata. In Theory of Designing of Computing Systems, pages 75–82.
Institute of Cybernetics of Ukrainian Acad. Sci. (in Russian).

[Rystsov, 1983] Rystsov, I. K. (1983). Polynomial complete problems in automata the-
ory. Information Processing Letters, 16(3):147–151.

[Ryzhikov, 2019] Ryzhikov, A. (2019). Synchronization problems in automata without
non-trivial cycles. Theoretical Computer Science, 787:77–88.

28

148 Synchronization under Dynamic Constraints

[Ryzhikov and Shemyakov, 2018] Ryzhikov, A. and Shemyakov, A. (2018). Subset syn-
chronization in monotonic automata. Fundamenta Informaticae, 162(2-3):205–221.

[Sandberg, 2004] Sandberg, S. (2004). Homing and synchronizing sequences. In Broy, M.,
Jonsson, B., Katoen, J., Leucker, M., and Pretschner, A., editors, Model-Based Testing
of Reactive Systems, Advanced Lectures [The volume is the outcome of a research
seminar that was held in Schloss Dagstuhl in January 2004], volume 3472 of Lecture
Notes in Computer Science, pages 5–33. Springer.

[Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192.

[Sipser, 1997] Sipser, M. (1997). Introduction to the Theory of Computation. PWS
Publishing Company.

[Trakhtman, 2007] Trakhtman, A. (2007). The Černý conjecture for aperiodic automata.
Discrete Mathematics and Theoretical Computer Science, 9(2).

[Truthe and Volkov, 2019] Truthe, B. and Volkov, M. V. (2019). Journal of Automata,
Languages and Combinatorics – Essays on the Černý Conjecture. https://www.jalc.
de/issues/2019/issue_24_2-4/content.html. Accessed: 10/1/2020.

[Türker and Yenigün, 2015] Türker, U. C. and Yenigün, H. (2015). Complexities of
some problems related to synchronizing, non-synchronizing and monotonic automata.
International Journal of Foundations of Computer Science, 26(1):99–122.

[Volkov, 2008] Volkov, M. V. (2008). Synchronizing automata and the Černý conjec-
ture. In Martín-Vide, C., Otto, F., and Fernau, H., editors, Language and Automata
Theory and Applications, Second International Conference, LATA 2008, Tarragona,
Spain, March 13-19, 2008. Revised Papers, volume 5196 of Lecture Notes in Computer
Science, pages 11–27. Springer.

[Vorel and Roman, 2015] Vorel, V. and Roman, A. (2015). Parameterized complexity of
synchronization and road coloring. Discrete Mathematics and Theoretical Computer
Science, 17(1):283–306.

29

149

150 Synchronization under Dynamic Constraints

Chapter 9

Synchronizing Deterministic

Push-Down Automata Can Be

Really Hard

Henning Fernau, Petra Wolf, and Tomoyuki Yamakami.

An extended abstract appeared in the proceedings of MFCS 2020:

Leibniz International Proceedings in Informatics (LIPIcs) 170 (2020) pp. 33:1 – 33:15.

DOI 10.4230/LIPIcs.MFCS.2020.33.

https://doi.org/10.4230/LIPIcs.MFCS.2020.33

152 Synchronizing Deterministic Push-Down Automata

Synchronizing Deterministic Push-Down Automata
Can Be Really Hard

Henning Fernau1, Petra Wolf∗1, and Tomoyuki Yamakami2

1Universität Trier, Germany
2University of Fukui, Japan

Abstract

The question if a deterministic finite automaton admits a software reset in the
form of a so-called synchronizing word can be answered in polynomial time. In this
paper, we extend this algorithmic question to deterministic automata beyond finite
automata. We prove that the question of synchronizability becomes undecidable
even when looking at deterministic one-counter automata. This is also true for an-
other classical mild extension of regularity, namely, that of deterministic one-turn
push-down automata. However, when we combine both restrictions, we arrive at
scenarios with a PSPACE-complete (and hence decidable) synchronizability prob-
lem. Likewise, we arrive at a decidable synchronizability problem for (partially)
blind deterministic counter automata.

There are several interpretations of what synchronizability should mean for de-
terministic push-down automata. This is depending on the role of the stack: should
it be empty on synchronization, should it be always the same or is it arbitrary? For
the automata classes studied in this paper, the complexity or decidability status
of the synchronizability problem is mostly independent of this technicality, but we
also discuss one class of automata where this makes a difference.

1 Introduction

The classical synchronization problem asks, for a given deterministic finite automaton
(DFA), if there exists a synchronizing word, i.e., an input that brings all states of the

∗The author was supported by DFG-funded project FE560/9-1

1

153

automaton to a single state. While this problem is solvable in polynomial time [Černý,
1964, Volkov, 2008, Sandberg, 2005], many variants, such as synchronizing only a subset
of states [Sandberg, 2005], or synchronizing into a specified subset of states [Rystsov,
1983], or synchronizing a partial automaton without taking any undefined transition on
some path [Martyugin, 2014], are PSPACE-complete. Restricting the length of a potential
synchronizing word of some DFA by an integer parameter in the input also yields a
harder problem, namely the NP-complete short synchronizing word problem [Rystsov,
1980, Eppstein, 1990]. The field of synchronizing automata has been intensively studied
over the last years also in attempt to verify the famous Černý conjecture, claiming
that every synchronizable DFA admits a synchronizing word of quadratic length in the
number of states [Černý, 1964, Černý, 2019, Starke, 1966, Starke, 2019]. We are far from
solving this combinatorial question, as the currently best upper bound on this length is
only cubic [Shitov, 2019, Szykuła, 2018]. For more on synchronization of DFAs and the
Černý conjecture, we refer to the surveys [Volkov, 2008, Béal and Perrin, 2016, Truthe
and Volkov, 2019].

The idea of bringing an automaton to a well-defined state by reading a word, starting
from any state, can be seen as implementing a software reset. This is why a synchronizing
word is also sometimes called a reset word. But this very idea is obviously not restricted to
finite automata. In this work, we want to move away from deterministic finite automata
to more general deterministic push-down automata. What should a synchronizing word
mean in this context? Mikami and Yamakami first studied in [Mikami and Yamakami,
2020] three different models, depending on requirements of the stack contents when
a word w drives the automaton into a synchronizing state, irrespectively of the state
where processing w started: we could require at the end (a) that the stack is always
empty; or (b) that the stack contents is always the same (but not necessarily empty);
or (c) that the stack contents is completely irrelevant upon entering the synchronizing
state. They demonstrated in [Mikami and Yamakami, 2020] some upper and lower
bounds on the maximum length of the shortest synchronizing word for those three models
of push-down automata, dependent on the stack height. Here, we study these three
models from a complexity-theoretic perspective. However, as we show in our first main
result, synchronizability becomes undecidable when asking about synchronizability in
any of the stack models. Clearly, by restricting the length of a potential synchronizing
word of some DPDA by an integer parameter (given in unary), we can observe that
the corresponding synchronization problems all become NP-complete, as the hardness
is trivially inherited from what is known about DFA synchronizability. Therefore, we
will not consider such length-bounded problem variants any further in this paper. Yet,
it remains interesting to observe that with DFAs, introducing a length bound on the
synchronizing word means an increase of complexity, while for DPDAs, this introduction

2

154 Synchronizing Deterministic Push-Down Automata

means dropping from undecidability close to feasibility. Beside general DPDAs, we will
study these stack model variants of synchronization for sub-classes of DPDAs such as
deterministic counter automata (DCA), deterministic (partially) blind automata and
finite-turn variants of DPDAs and DCAs. In [Fernau and Wolf, 2020], further restricted
sub-classes of DPDAs, such as visibly and very visibly deterministic push-down and
counter automata are considered. There, all considered cases are in EXPTIME and even
membership in P and PSPACE is observed, contrasting our undecidability results here.

Closest to the problems studied in our paper comes the work of Chistikov et al., see
[Chistikov et al., 2019], reviewed in the following, as their automaton model could be
viewed as a special case of push-down automata, related to input-driven pushdown au-
tomata [Mehlhorn, 1980] which later became popular as visibly push-down automata
[Alur and Madhusudan, 2004]. In [Chistikov et al., 2019], the synchronization problem
for so-called nested word automata (NWA) has been studied, where the concept of syn-
chronization has been generalized to bringing all states to one single state such that for
all runs the stack is empty (or in its start configuration) after reading the synchroniz-
ing word. In this setting the synchronization problem is solvable in polynomial time,
whereas the short synchronizing word problem is PSPACE-complete (here, the length
bound is given in binary) and the question of synchronizing from or into a subset is
EXPTIME-complete.

The DFA synchronization problem has been generalized in the literature to other au-
tomata models including infinite-state systems with infinite branching such as weighted
and timed automata [Doyen et al., 2014, Shirmohammadi, 2014] or register automata
[Babari et al., 2016]. For instance, register automata are infinite state systems where a
state consists of a control state and register contents. A synchronizing word for a reg-
ister automaton brings all (infinitely many) states to the same state (and same register
content). The synchronization problem for deterministic register automata (DRA) is
PSPACE-complete and NLOGSPACE-complete for DRAs with only one register.

Finally, we want to mention that the term synchronization of push-down automata has
already some occurrences in the literature, i.e., in [Caucal, 2006, Arenas et al., 2011],
but here the term synchronization refers to some relation of the input symbols to the
stack behavior [Caucal, 2006] or to reading different words in parallel [Arenas et al.,
2011] and is not to be confused with our notion of synchronizing states.

We are presenting an overview on our results at the end of the next section, where we
introduce our notions more formally.

3

155

2 Definitions

We refer to the empty word as ε. For a finite alphabet Σ we denote by Σ∗ the set of
all words over Σ and by Σ+ = ΣΣ∗ the set of all non-empty words. For i ∈ N we set[i] = {1,2, . . . , i}. For w ∈ Σ∗ we denote by ∣w∣ the length of w, by w[i] for i ∈ [∣w∣] the
i’th symbol of w, and by w[i..j] for i, j ∈ [∣w∣] the factor w[i]w[i + 1] . . .w[j] of w. We
call w[1..i] a prefix and w[i..∣w∣] a suffix of w. The reversal of w is denoted by wR, i.e.,
for ∣w∣ = n, wR = w[n]w[n − 1] . . .w[1].
We call A = (Q,Σ, δ, q0, F) a deterministic finite automaton (DFA for short) if Q is a
finite set of states, Σ is a finite input alphabet, δ is a transition function Q × Σ → Q,
q0 is the initial state and F ⊆ Q is the set of final states. The transition function δ is
generalized to words by δ(q,w) = δ(δ(q,w[1]),w[2..∣w∣]) for w ∈ Σ∗. A word w ∈ Σ∗ is
accepted by A if δ(q0,w) ∈ F and the language accepted by A is defined by L(A) = {w ∈
Σ∗ ∣ δ(q0,w) ∈ F}. We extend δ to sets of states Q′ ⊆ Q or to sets of letters Σ′ ⊆ Σ,
letting δ(Q′,Σ′) = {δ(q′, σ′) ∣ (q′, σ′) ∈ Q′ × Σ′}. Similarly, we may write δ(Q′,Σ′) = p
to define δ(q′, σ′) = p for each (q′, σ′) ∈ Q′ ×Σ′. The synchronization problem for DFAs
(called DFA-Sync) asks for a given DFA A whether there exists a synchronizing word
for A. A word w is called a synchronizing word for a DFA A if it brings all states of the
automaton to one single state, i.e., ∣δ(Q,w)∣ = 1.

We callM = (Q,Σ,Γ, δ, q0,�, F) a deterministic push-down automaton (DPDA for short)
if Q is a finite set of states; the finite sets Σ and Γ are the input and stack alphabet,
respectively; δ is a transition function Q × Σ × Γ → Q × Γ∗; q0 is the initial state; � ∈ Γ

is the stack bottom symbol which is only allowed as the first (lowest) symbol in the
stack, i.e., if δ(q, a, γ) = (q′, γ′) and γ′ contains �, then � only occurs in γ′ as its prefix
and moreover, γ = �; and F is the set of final states. We will only consider real-time
push-down automata and forbid ε-transitions, as can be seen in the definition. Notice
that the bottom symbol can be removed, but then the computation gets stuck.

Following [Chistikov et al., 2019], a configuration of M is a tuple (q, υ) ∈ Q × Γ∗. For a
letter σ ∈ Σ and a stack content υ with ∣υ∣ = n we write (q, υ) σÐ→ (q′, υ[1..(n − 1)]γ) if
δ(q, σ, υ[n]) = (q′, γ). This means that the top of the stack υ is the right end of υ. We also
denote by Ð→ the reflexive transitive closure of the union of σÐ→ over all letters in Σ. The
input words on top of Ð→ are concatenated accordingly, so that Ð→= ⋃w∈Σ∗ wÐ→. The
language L(M) accepted by a DPDA M is L(M) = {w ∈ Σ∗ ∣ (q0,�) wÐ→ (qf , γ), qf ∈ F}.
We call the sequence of configurations (q,�) wÐ→ (q′, γ) the run induced by w, starting
in q, and ending in q′.
We will discuss three different concepts of synchronizing DPDAs. For all concepts we

4

156 Synchronizing Deterministic Push-Down Automata

demand that a synchronizing word w ∈ Σ∗ maps all states, starting with an empty stack,
to the same synchronizing state, i.e., for all q, q′ ∈ Q∶ (q,�) wÐ→ (q, υ), (q′,�) wÐ→ (q, υ′).
In other words, for a synchronizing word all runs started on some states in Q end up in
the same state. In addition to synchronizing the states of a DPDA we will consider the
following two conditions for the stack content: (1) υ = υ′ = �, (2) υ = υ′. We will call (1)
the empty stack model and (2) the same stack model. In the third case, we do not put
any restrictions on the stack content and call this the arbitrary stack model.

As we are only interested in synchronizing a DPDA, we can neglect the start and final
states.

As mentioned above, we will show that synchronizability of DPDAs is undecidable,
which is in stark contrast to the situation with DFAs, where this problem is solvable
in polynomial time. Hence, it is interesting to discuss deterministic variants of classical
sub-classes of context-free languages. In this paper, we focus on one-counter languages
and on linear languages and related classes. A deterministic (one) counter automaton
(DCA) is a DPDA where ∣Γ/{�}∣ = 1. Note that our DCAs can perform zero-tests by
checking if the bottom-of-stack symbol is on top of the stack. As we will see that also
with this restriction, synchronizability is still undecidable, we further restrict them to
the partially blind setting [Greibach, 1978]. This means in our formalization that
a transition δ(q, σ, x) = (q′, γ) either satisfies γ = ε for both x = 1 and x = �, or x
is a prefix of γ, i.e., γ = xγ′, and then both δ(q, σ,1) = (q′,1γ′) (for Γ = {1,�}) and
δ(q, σ,�) = (q′,�γ′). The situation is even more delicate with one-turn or, more general,
finite-turn DPDAs, whose further discussion and formal definition we defer to the specific
section below.

We are now ready to define a family of synchronization problems, the complexity of
which will be our subject of study in the following chapters.

Definition 1 (Sync-DPDA-Empty).
Given: DPDA M = (Q,Σ,Γ, δ,�).
Question: Does there exist a word w ∈ Σ∗ that synchronizesM in the empty stack model?

For the same stack model, we refer to the synchronization problem above as Sync-

DPDA-Same and as Sync-DPDA-Arb in the arbitrary stack model. Variants of these
problems are defined by replacing the DPDA in the definition above by a DCA, a de-
terministic partially blind counter automaton (DPBCA), or by adding turn restrictions,
in particular, whether the automaton is allowed to make zero or one turns of its stack
movement.

5

157

class of automata empty stack model same stack model arbitrary stack model
DPDA undecidable undecidable undecidable
1-Turn-Sync-DPDA undecidable undecidable undecidable
0-Turn-Sync-DPDA PSPACE-complete undecidable PSPACE-complete
DCA undecidable undecidable undecidable
1-Turn-Sync-DCA PSPACE-complete PSPACE-complete PSPACE-complete
0-Turn-Sync-DCA PSPACE-complete PSPACE-complete PSPACE-complete
DPBCA decidable decidable decidable

Table 1: Complexity status of the synchronization problem for different classes of deter-
ministic real-time push-down automata in different stack synchronization modes as well
as finite-turn variants of the respective synchronization problem.

Outlook and summary of the paper

We summarize our results in Table 1. In short, while already seemingly innocuous
extensions of finite automata (with counters or with 1-turn push-downs) result in an
undecidable synchronizability problem, some extensions do offer some algorithmic syn-
chronizability checks, although nothing efficient. At the end, we show how to apply some
of our techniques to synchronizability questions concerning sequential transducers.

As an auxiliary result for proving undecidability of finding 1-turn synchronizing words
for real-time deterministic push-down automata, we also prove undecidability of the
inclusion and intersection non-emptiness problems for these automata, which could be
an interesting result on its own.

3 General DCAs and DPDAs: When Synchronizabil-

ity is Really Hard

The inclusion problem for deterministic real-time one counter automata that can perform
zero-tests is undecidable [Böhm and Göller, 2011, Minsky, 1961]. This result is used to
prove undecidability of synchronization in any general setting as the main result of this
section. However, there are special cases of DPDAs and DCAs that have a decidable
inclusion problem (see [Higuchi et al., 1995] as an example) so that this argument does
not apply to these sub-classes. We will have a closer look at some of these sub-classes in
the following sections.

Theorem 1. The problems Sync-DCA-Empty, Sync-DCA-Same, and Sync-DCA-

Arb are undecidable.

6

158 Synchronizing Deterministic Push-Down Automata

Proof. We give a reduction from the undecidable intersection non-emptiness problem
for real-time DCAs [Böhm and Göller, 2011]. Let M1 = (Q1,Σ,{1,�}, δ1, q1

0,�, F1) and
M2 = (Q2,Σ,{1,�}, δ2, q2

0,�, F2) be two DCAs over the same input alphabet with disjoint
state sets. We construct a DCA MS = (Q1∪Q2∪{q1

f , q
2
f , qs},Σ∪{a, b},{1,�}, δ,�), where

we neglect start and final states, which is synchronizable in the empty stack model if and
only if the DCAs M1 and M2 accept a common word. The same construction also works
for the same stack and arbitrary stack models. We assume {q1

f , q
2
f , qs} ∩ (Q1 ∪ Q2) =∅ and {a, b} ∩ Σ = ∅. For the states in Q1 and Q2, the transition function δ agrees

with δ1 and δ2 for all letters in Σ. In the following, let i ∈ {1,2}. For q ∈ Qi, we set
δ(q, a,�) = (qi0,�) and δ(q, a,1) = (qif ,1). Further, for q ∈ Qi/Fi we set δ(q, b,1) = (qif ,1)
and δ(q, b,�) = (qif ,�1). For q ∈ Fi, we set δ(q, b,1) = (qs,1) and δ(q, b,�) = (qs,�).
For qif , we set δ(qif , a,�) = (qi0,�) with all other transitions we stay in qif and increase
the counter. Hence, the state qif can only be left with an empty counter and this is
only the case if no letter other than a has been read before. For the state qs, we set
δ(qs,Σ ∪ {a, b},�) = (qs,�), and δ(qs,Σ ∪ {a, b},1) = (qs, ε).
First, assume there is a word w ∈ L(M1) ∩L(M2). Then, the word awb synchronizes all
states of the DCA MS into the state qs. Let l1, l2 be stack contents such that (q1

0,�) awbÐ→(qs, l1) and (q2
0,�) awbÐ→ (qs, l2). Let l = max(∣l1∣, ∣l2∣). Then awbbl synchronizes MS in the

empty stack model.

For the other direction assume there exists a word w ∈ (Σ∪{a, b})∗ that synchronizesMS

in the empty stack model. The states q1
f and q2

f forces w[1] = a since otherwise these
states cannot be left. Since the state qs has no outgoing transition, it must be our
synchronizing state. In order to reach it, w must contain at least one letter b. Let
m ∈ [∣w∣] be an index such that w[m] = b and for j < b, w[j] ≠ b. With a letter b we move
from all final states to the state qs and from all non-final states of M1 and M2 we go to a
state qif and increase the counter. As we cannot leave the states qif if we reach them once
with a non-empty counter, reading a b from a non-final state causes the automaton to
reach a configuration from which we no longer can synchronize the automaton. Hence,
we know that after reading w[1..m] all active states are in the set F1 ∪ F2 ∪ {qs}. Let
` ∈ [∣w∣] be an index with ` < m with w[`] = a such that for ` < i < m, w[i] ≠ a. Then
w[` + 1 ..m − 1] is a word which is accepted by both DCAs M1 and M2.

It is easy to see that clearing the stacks in state qs is not crucial and hence the reduction
also works for the same stack and arbitrary stack models.

Corollary 1. The problems Sync-DPDA-Empty, Sync-DPDA-Same, and Sync-

DPDA-Arb are undecidable.

How can we overcome the problem that, even for deterministic one-counter languages,

7

159

the synchronizability problem is undecidable? One of the famous further restrictions are
(partially) blind counters, to which we turn our attention next.

4 Partially Blind Deterministic Counter Automata

The blind and partially blind variations of counter automata have been introduced by
Greibach in [Greibach, 1978]. She already noticed that the emptiness problem for such
automata (even with multiple counters) is decidable should the reachability problem for
vector addition systems, also known as Petri nets, be decidable, which has been proven
some years later [Mayr, 1981, Kosaraju, 1982]; its non-elementary complexity has only
been recently fully understood [Czerwinski et al., 2021], for a survey see [Schmitz, 2016].
Although we will stick to the models introduced so far in the following statements and
proofs, we want to make explicit that our decidability results also hold for deterministic
multi-counter automata. But as we focus on discussing families of automata describing
languages between regular and context-free, we refrain from giving further details here.

Because partially blind counters can simulate blind counters, our results hold for blind
counters as well, but we make them explicit only for the partially blind case. One
formal reason is that we want to preserve our stack model, while it becomes awkward to
formalize blind counters in this stack model (see next section).

Recall that a partially blind counter automaton will get blocked when its counter gets
below zero. The blindness refers to the fact that such a machine can never explicitly
test its counter for zero. This translates into our formalization by requiring that a
transition δ(q, σ, x) = (q′, γ) either satisfies γ = ε for both x = 1 and x = �, or x is
a prefix of γ, i.e., γ = xγ′, and then both δ(q, σ,1) = (q′,1γ′) (for Γ = {1,�}) and
δ(q, σ,�) = (q′,�γ′). In other words, the processing of a letter will somehow perform the
same action, irrespectively of the stack contents, whenever this is possible; however, the
machine will stop if it is trying to pop the bottom-of-stack symbol. As a specialty, such
automata accept when having arrived in a final state together with having zero in its
counter. We call a deterministic partially blind (one-)counter automaton a DPBCA.

Theorem 2. The problems Sync-DPBCA-Empty, Sync-DPBCA-Same, and Sync-

DPBCA-Arb are decidable.

We are not specifying the complexity here, but only mention that we are using, in the end,
the reachability problem for Petri nets, which is known to be decidable, but only with
a non-elementary complexity; see [Mayr, 1981, Kosaraju, 1982, Czerwinski et al., 2021].
However, we leave it as an open question if the synchronization complexity of DPBCAs

8

160 Synchronizing Deterministic Push-Down Automata

is non-elementary. When looking into this question more in details, the number of states
of the counter automaton could be a useful parameter to be discussed, as it influences
the number of counters of the partially blind multi-counter automaton that we construct
in our proof in order to show the claimed decidability result.

Proof. Let M = (Q,Σ,{1,�}, δ, q0,�, F) be some DPBCA. Let us first describe the case
Sync-DPBCA-Empty. Here, we can first produce the multi-counter ∣Q∣-fold prod-
uct automaton M ∣Q∣ from M that starts, assuming Q = {q0, . . . , q∣Q∣−1}, in the state(q0, . . . , q∣Q∣−1). Notice that M ∣Q∣ has ∣Q∣∣Q∣ many states and operates ∣Q∣ many counters.
We could take as the set of final states F ∣Q∣ = {(q, . . . , q) ∣ q ∈ Q}. This mimicks state
synchronization of M : any word that synchronizes all states of M drives M ∣Q∣ into F .
As mentioned above, partially blind multi-counter automata accept with final states and
empty stacks, so that M is synchronizable in the empty stack model if and only if M ∣Q∣
accepts any word.

For the arbitrary stack model, we have to count down (removing 1 from any of the stacks
sequentially) until the bottom-of-stack symbol appears on all stacks on top (at the same
time), leading to the variant M ∣Q∣

Arb. These are moves without reading the input (or
reading arbitrary symbols at the end, this way only prolonging a possibly synchronizing
word), but this does not matter, as the emptiness problem is decidable for partially
blind nondeterministic multi-counter automata. It should be clear that M ∣Q∣

Arb accepts
any word if and only if M is synchronizable. For the case Sync-DPBCA-Same, the
counting down at the end should be performed in parallel for all counters instead.

5 Discussing Blind Counter Automata

Recall that a counter automaton is blind if it has a counter that stores some integer (that
can also be negative), but it can test emptiness only at the very end of its computation,
being hence part of the definition of the accepted language. If we want to model this
behavior similar to our previous definitions, we would therefore consider an element from
Q×Z as a blind counter automaton configuration. The transition function δ would map
Q × Σ to Q × {−1,0,1}, meaning that if δ(q, σ) = (q′, z), then (q, c) σÐ→ (q′, c + z). The
remainder of this formalization is standard and hence omitted. Alternatively, we could
try to formalize this behavior also as a pushdown automaton. But then, the automaton
must store in an additional bit if the counter stores a positive or a negative number. This
also means that depending on this bit of information, incrementing the counter could
either mean pushing 1 onto the stack or popping 1 from the stack, and (in a reversed
fashion), this is also true when decrementing the counter. Clearly, this additional bit

9

161

of information cannot be tested by the machine itself upon processing, as this would
destroy the blindness condition; yet, this bit influences the formal processing, so that
any formalization of blind counter automata (and their synchronizability) as special
push-down automata looks somewhat strange.

How can we use this model for synchronization purposes? First, observe that as the
counter contents never influences the run of a blind automaton, synchronization with
the arbitrary stack model would mean just synchronization of the underlying DFA.

This looks different for the empty stack model. Here, we (have to) use a product automa-
ton construction as in the proof of Theorem 2 to reduce this synchronization problem
to the emptiness problem of blind (real-time) deterministic multi-counter machines. By
adding the possibility to decrement all counters upon reading a special symbol at the
end, the emptiness problem of blind (real-time) deterministic multi-counter machines can
also be used to show the decidability of the synchronization problem for deterministic
blind counter automata. We summarize our observations as follows.

Proposition 1. The problems Sync-DBCA-Empty, Sync-DBCA-Same, and Sync-

DBCA-Arb are decidable, the latter even in polynomial time.

As a final remark, let us mention that already Greibach [Greibach, 1978] observed the
relations between (quasi-realtime) blind counter automata and reversal-bounded counter
automata (reversals is just another name for turns), which also links to our discussion
of finite-turn automata. However, when making a blind counter automaton reversal-
bounded, the number of counters is increased, so that we cannot compare these models
for a fixed number of counters, which is of course our focus when studying language
classes (and automata models) between regular and context-free.

6 Finite-Turn DPDAs

Finite-turn PDAs are introduced in [Ginsburg and Spanier, 1966]. From the formal
language side, it is known that one-turn PDAs characterize the rather familiar family of
linear context-free languages, usually defined via grammars. In our setting, the automata
view is more interesting. We adopt the definition in [Valiant, 1973]. For a DPDA M

an upstroke of M is a sequence of configurations induced by an input word w such that
no transition decreases the stack-height. Accordingly a downstroke of M is a sequence
of configurations in which no transition increases the stack-height. A stroke is either an
upstroke or downstroke. Note that exchanging the top symbol of the stack is allowed in
both an up- and downstroke. A DPDA M is an n-turn DPDA if for all w ∈ L(M) the

10

162 Synchronizing Deterministic Push-Down Automata

sequence of configurations induced by w can be split into at most n+1 strokes. Especially,
for 1-turn DPDAs each sequence of configurations induced by an accepting word consists
of one upstroke followed by at most one downstroke. There are two subtleties when
translating this concept to synchronization: (a) there is no initial state so that there is
no way to associate a stroke counter to a state, and (b) there is no language of accepted
words that restricts the set of words on which the number of strokes should be limited.
We therefore generalize the concept of finite-turn DPDAs to finite-turn synchronization
for DPDAs in the following way, which offers quite an interesting complexity landscape.

Definition 2. n-Turn-Sync-DPDA-Empty

Given: DPDA M = (Q,Σ,Γ, δ, q0,�, F).
Question: Is there a synchronizing word w ∈ Σ∗ in the empty stack model such that for
all states q ∈ Q, the sequence of configurations (q,�) wÐ→ (q,�) consists of at most n + 1

strokes?

We call such a synchronizing word w an n-turn synchronizing word for M . We define
n-Turn-Sync-DPDA-Same and n-Turn-Sync-DPDA-Arb accordingly for the same
stack and arbitrary stack models. Further, we extend the problem definition to real-time
DCAs.

Motivated by the proof of Theorem 1, we are first reviewing the status of the inclusion
problem for 1-turn DPDAs in the literature.

Remark 1. The inclusion problem for 1-turn DPDAs with ε-transitions is undecid-
able [Friedman, 1976, Valiant, 1973]. The intersection non-emptiness problem for real-
time 1-turn non-deterministic push-down automata is also undecidable [Kim, 2011]. The
decidability of the inclusion and intersection non-emptiness problems for real-time 1-turn
deterministic push-down automata have not been settled in the literature; we will do so
below by proving undecidability for both problems.

We will present a reduction from the undecidable Post Correspondence Problem

(PCP for short) [Post, 1946] to the intersection non-emptiness for real-time 1-turn DP-
DAs which also implies undecidability of the inclusion problem for this class since it is
closed under complement.

Definition 3 (PCP).
Given: Two lists of input words over {0,1}: A = (a1, a2, . . . , an), and B = (b1, b2, . . . , bn).
Question: Is there a sequence of indices i1, i2, . . . , ik with ij ∈ [n] for 1 ≤ j ≤ k such that
ai1ai2 . . . aik = bi1bi2 . . . bik?

11

163

Observe that already Post stated this problem over binary alphabets. Much later, Matya-
sevich and Sénizergues [Matiyasevich and Sénizergues, 2005] showed that indeed lists of
length seven are sufficient for undecidability. This was recently lowered to lists of length
five by Neary [Neary, 2015].

Theorem 3. Let M1 and M2 be two real-time 1-turn DPDAs. Then the following prob-
lems are undecidable: Is L(M1) ∩L(M2) = ∅? Is L(M1) ⊆ L(M2)?
Proof. Let A = (a1, a2, . . . , an), and B = (b1, b2, . . . , bn) be an instance of PCP. We con-
struct from A a real-time 1-turn DPDA MA = (Q,{0,1,#,$}∪ [n],{0,1,�}, δ, q0,�,{qf})
where [n] = {1,2, . . . , n} are marked numbers from 1 to n. The set Q contains the start
state q0, the states q0, qcheck and qfail, and the single final state qf . The rest of Q is a par-
tition into state sets Q1,Q2, . . . ,Qn such that the (deterministic partial) sub-automaton
induced by Qi reads the string ai#bi and thereby pushes each symbol of ai on the stack,
whereas symbols of the string bi leave the stack content unchanged. The sub-automaton
induced by Qi is embedded into MA, and thereby completed, by taking the state after
reading ai#bi to q0 with the symbol #. We go from q0 and q0 to the initial state of
the sub-automaton induced by Qi by the letter i. With the letter $ the state q0 maps
to qcheck. Here, if the input symbol equals the symbol on top of the stack, we pop the
stack and stay in qcheck until we reach the bottom symbol �, in which case an additional
letter $ brings us to the final state qf . If the input symbol does not equal the symbol
on top of the state we go to qfail which is a trap state for all letters. Every other not yet
defined transition on Q maps to the state qfail. If not stated otherwise, every transition
leaves the stack content unchanged.

For the list B we construct a real-time 1-turn DPDAMB in a similar way except that here
we push the strings bi on the stack and symbols of strings ai leave the stack unchanged.

The languages accepted by MA and MB are the following ones:

L(MA) = { i1ai1#bi1#i2ai2#bi2#⋯imaim#bim#$aRim⋯aRi1$ ∣m ≥ 1, ij ∈ [n], j ≤m}
L(MB) = { i1ai1#bi1#i2ai2#bi2#⋯imaim#bim#$bRim⋯bRi1$ ∣m ≥ 1, ij ∈ [n], j ≤m}

Obviously, the given PCP has a solution if and only if L(MA) ∩L(MB) ≠ ∅.
By complementing the set of final states, fromMA one would arrive at a real-time 1-turn
DPDA M ′

A such that L(M ′
A) is the complement of L(MA), so that the given PCP has

no solution if and only if L(M ′
A) ⊇ L(MB).

We will now adapt the aforementioned construction to show that the synchronization
problem for real-time one-turn DPDAs is undecidable in all three synchronization models.

12

164 Synchronizing Deterministic Push-Down Automata

Theorem 4. The problems 1-Turn-Sync-DPDA-Empty, 1-Turn-Sync-DPDA-

Same, and 1-Turn-Sync-DPDA-Arb are undecidable.

Proof. Let MA and MB be the real-time 1-turn DPDAs from the proof in Theorem 3.
We take these machines as inputs for the construction in the proof of Theorem 1 to
obtain the DPDA M . Therefore, observe that the construction also works if the input
machines are not only DCAs but general DPDAs. Further, observe that forMA andMB,
if for both machines the only active state is the final state, then the stack of all runs is
empty and hence the stack does not need to be altered in the synchronizing state and
all transitions here can act as the identity and leave the stack unchanged.

If w is a word in L(MA) ∩ L(MB), then awb synchronizes M in the empty, same, and
arbitrary stack models; furthermore, awb is a 1-turn synchronizing word for M . Con-
versely, if w is a 1-turn synchronizing word for M , then w must be of the form avb or
auavb where v ∈ L(MA)∩L(MB) and u is a word that does not change the stack because,
otherwise, either M could not be synchronized, or the 1-turn condition is violated. To
be more precise, a must be the first letter of w since, otherwise, we get stuck in q1

f

and q2
f . The letter a resets the machines MA and MB to their initial state and can only

be read when the stack is empty since, otherwise, the machine gets stuck. In order to
reach final states, both machines MA and MB must increase and decrease the stack by
reading some word v, but as soon as we increased the stack once, we are not allowed to
reset the machine anymore due to the 1-turn condition. Hence, the letter a can only be
read while the stack has not been changed yet. Note that for all three stack models, the
construction enforces that any 1-turn synchronizing word brings M into a configuration
where the stack is empty.

When considering automata as language accepting devices, there is no good use of 0-
turn PDAs, as they cannot exploit their stack. This becomes different if synchronization
requires to end in the same configuration, which means that in particular the stack
contents are identical.

Theorem 5. The problem 0-Turn-Sync-DPDA-Same is undecidable.

Proof sketch. The proof is by a straightforward adaption of the previously presented
constructions by getting rid of the check phase; instead, check with the same stack
condition that the two words of the PCP coincide. As we never pop the stack, a 0-turn
DPDA is sufficient in the construction.

Proof. Let A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn) be an instance of PCP. We construct
from A a real-time 0-turn partial DPDA MA = (QA,{0,1,#}∪ [n],{0,1,�}, δA,�) where

13

165

[n] = {1,2, . . . , n} are marked numbers from 1 to n. The set QA contains the states
qA0 and qA0 . The rest of QA is a partition into states QA

1 ,Q
A
2 , . . . ,Q

A
n such that the

(deterministic partial) sub-automaton induced by QA
i reads the string ai#bi and thereby

pushes each symbol of ai on the stack whereas symbols of bi leave the stack unchanged.
The sub-automaton induced by QA

i is embedded into MA, by taking the state after
reading ai#bi to qA0 with the symbol #. We go from qA0 and qA0 to the initial state of the
sub-automaton induced by QA

i by the letter i. If not stated otherwise, every transition
leaves the stack content unchanged.

For the list B, we construct a real-time 0-turn partial DPDA MB = (QB,{0,1,#} ∪[n],{0,1,�}, δB,�) in a similar way, except that here we push the strings bi on the stack
and symbols of strings ai leave the stack unchanged.

We combine the two machines MA and MB into a real-time 0-turn complete DPDA
M = (QA ∪ QB ∪ {qAfail, q

B
fail, qsync},{0,1,#, a} ∪ [n],{0,1,�}, δ,�) where all unions are

assumed to be disjoint. The transition function δ agrees with δA and δB on all states
in QA ∪QB and letters in {0,1,#} ∪ [n]. For the letter a we set for all states qj ∈ Qj

with j ∈ {A,B}, δ(qj, a,�) = (qj0,�) and for γ ≠ �, δ(qj, a, γ) = (qjfail, γ). For qj0 and
γ ∈ {0,1} we set δ(qj0,#, γ) = (qsync, γ). For qjfail we set δ(qjfail, a,�) = (qj0,�) and for
all other transitions we stay in qjfail and add a 1 on top of the stack. For qsync we set
δ(qsync, a,�) = (qA0 ,�) and for all other transitions, we stay in qsync and leave the stack
unchanged. With all other not yet defined transition in Qj, we go to qjfail and add a 1 on
top of the stack.

Following previous arguments, it is clear that any synchronizing word w for M in the
same stack model must start with the letter a and contain at at least one sequence ##.
Further, let j ∈ w[∣w∣] with w[j] = # be the position of the first occurrence of a sequence
and let i ∈ w[∣w∣] with w[i] = a be the position of the last occurrence of a before
position j. Then, the sub-word w[i+1 .. j −1] describes a solution for the PCP instance.
Conversely, a solution of the PCP can be embedded in a synchronizing word for M .

The picture changes again for other 0-turn stack models, but remains intractable.

Theorem 6. The problems 0-Turn-Sync-DCA-Empty, 0-Turn-Sync-DCA-Same

and 0-Turn-Sync-DCA-Arb are PSPACE-hard.

Proof. We give a reduction from the problem DFA-Sync-Into-Subset, also called
Global Inclusion Problem for Non-Initial Automata in [Rystsov, 1983], proven
to be PSPACE-complete in Theorem 2.1 in [Rystsov, 1983]:

Definition 4 (DFA-Sync-Into-Subset).

14

166 Synchronizing Deterministic Push-Down Automata

Given: DFA A = (Q,Σ, δ), subset S ⊆ Q.
Question: Is there a word w ∈ Σ∗ such that δ(Q,w) ⊆ S?
Let A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DCA M = (Q ∪{qstall, qsync},Σ ∪ {a},{N,�}, δ′,�) where all unions are disjoint. For q ∈ Q, σ ∈ Σ

and γ ∈ {N,�}, set δ′(q, σ, γ) = (δ(q, σ), γ). For the letter a, we set for states q ∈ S,
δ′(q, a,�) = (qstall,�) and for states q ∈ Q/S, we set δ′(q, a,�) = (qstall,�N). For qstall we
set δ′(qstall, a,�) = (qsync,�) and δ′(qstall, a,N) = (qstall,N). All transitions not yet defined
act as the identity and leave the stack unchanged.

First, assume there exists a word w ∈ Σ∗ that synchronizes Q into S in the DFA A. Then
clearly waa synchronizes M in the arbitrary stack model. Now, assume there exists a
word w ∈ (Σ ∪ {a})∗ that synchronizes M in the arbitrary stack model. Then, w must
contain at least two occurrences of a to bring all states into the sink state qsync. In order
to reach qsync the states in Q need to pass through the state qstall but by doing so, it is
noted on the stack if an active state transitions from Q/S into qstall and only the active
states coming from S are allowed to pass on to qsync. In qstall the stack content cannot
be changed and hence the prefix of w up to the first occurrence of the letter a must have
already synchronized Q into S in the DFA A. Note that M can only be synchronized
by a word that leaves all stacks empty. Hence, the result follows for all three stack
models.

Corollary 2. The problems 0-Turn-Sync-DPDA-Empty and 0-Turn-Sync-DPDA-

Arb are PSPACE-hard.

Proof. The claim follows from Theorem 6 by inclusion of automata classes.

Theorem 7. 0-Turn-Sync-DPDA-Empty,0-Turn-Sync-DPDA-Arb ∈ PSPACE.

Proof. Let M = (Q,Σ,Γ, δ,�) be a DPDA. We first focus on 0-Turn-Sync-DPDA-

Empty. As we need to synchronize with an empty stack, the 0-turn condition forbids us
to write anything on the stack at all. Hence, we only keep in M transitions of the form
δ(q, σ,�) = (q′,�) for q, q′ ∈ Q, σ ∈ Σ and delete all other transitions from M . We call
the obtained automaton M ′. We may observe that M ′ is basically a partial DFA and
the problem of synchronizing M with a 0-turn synchronizing word in the empty stack
model has been reduced to synchronizing M ′ without using an undefined transition.
The latter problem is called the Careful Synchronization problem and is solvable
in PSPACE [Martyugin, 2014].

For the problem 0-Turn-Sync-DPDA-Arb it is sufficient for each run to only keep the
symbol on top of the stack in memory, as we are not allowed to decrease the height of the

15

167

stack at any time, but transitions might still depend on the symbol on top of the stack.
As we have no restriction on the stack content for synchronization, we can safely forget all
other symbols on the stack. Hence, we can construct fromM a partial DFAM ′ with state
set Q×Γ by re-interpreting transitions δ(q, σ, γ) = (q′, γ′) for q, q′ ∈ Q,σ ∈ Σ, γ ∈ Γ, γ′ ∈ Γ∗
as δ((q, γ), σ) = (q′, γ′[∣γ′∣]) and deleting transitions of the form δ(q, σ, γ) = (q′, ε). The
problem of synchronizing M with a 0-turn synchronizing word in the arbitrary stack
model has now been reduced to finding a word that brings all states (q′,�) of M ′ with
q′ ∈ Q into one of the sets Sq = {(q, γ) ∣ γ ∈ Γ} for q ∈ Q without using an undefined
transition. We can solve this problem using polynomial space by guessing a path in
the ∣Q∣-fold product automaton M ′∣Q∣. The automaton M ′∣Q∣ with state set (Q × Γ)∣Q∣,
consisting of ∣Q∣-tuples of states in Q × Γ, and alphabet Σ, is defined based on M ′ by
simulating the transition function δ ofM ′ on every single state in a ∣Q∣-tuple state ofM ′∣Q∣
independently, yielding the transition function δ∣Q∣ of M ′∣Q∣. Here, δ∣Q∣ is only defined on
a ∣Q∣-tuple if and only if δ is defined on every state of this tuple. Clearly, the size of
M ∣Q∣ is O((∣Q∣∣Γ∣)∣Q∣) and we can guess a path from the state ((q1,�), (q2,�), . . . , (qn,�))
for Q = {q1, q2, . . . , qn} to one of the sets Sq for q ∈ Q using space O(log(∣Q∣∣Γ∣)∣Q∣). We
conclude the proof with Savitch’s famous theorem proving PSPACE = NPSPACE [Savitch,
1970].

Theorem 8. 1-Turn-Sync-DCA-Empty, 1-Turn-Sync-DCA-Same, and 1-Turn-

Sync-DCA-Arb are in PSPACE.

Notice that PSPACE-hardness is inherited from corresponding results for visibly counter
automata, as obtained in [Fernau and Wolf, 2020].

Proof. Let M = (Q,Σ,Γ, δ,�) be a DCA. As we are looking into 1-turn behavior, any
computation, in which we are interested, would split into two phases: in the first upstroke
phase, the counter is incremented or stays constant, while in the second downstroke
phase, the counter is decremented or stays constant. In particular, because the counter
is 1-turn, after the first counter increment, any zero-test will always return ‘false’, while in
the downstroke phase, when zero-tests return ‘true’, then all future computations cannot
decrement the counter any further, so that at the end, the counter will also contain zero.
We are formalizing this intuition to create a machine that has an awareness about its
phase stored in its states and that is behaving very similar. In the rest of the proof, a
spread-out variant of a word a1a2⋯an of length n, with symbols ai from Σ, is any word
in a1Σa2Σ⋯anΣ of length 2n.

We will now construct from M and q ∈ Q a deterministic 1-turn counter automaton Mq

that accepts precisely all spread-out variants of words thatM would accept when starting
in state q and finishing its 1-turn computation (in any state) with the empty stack, but

16

168 Synchronizing Deterministic Push-Down Automata

that keeps track of a basic property of managing the counter in so-called stages. Mq has
the state set Q×{1,2,3,4}×{0,1}, (q,1,0) as its initial state, and as its set of final states,
take Q × {1,4} × {0}. The transitions of δq can be defined with the following semantics
in mind (details are given below): (a) the last bit always alternates, (b) the spread-out
is used to enable a deterministic work and to make sure that the simulated machine
has counter content zero if the simulating automaton Mq is in one of the states from
Q × {1,4} × {0}, (c) Mq changes from Q × {1} × {0,1} to Q × {2} × {0,1} if the counter
is no longer zero, so that the simulated machine has “properly” entered the upstroke
phase, (d) Mq changes from Q× {2}× {0,1} to Q× {3}× {0,1} if the simulated machine
made its first pop, i.e., it “properly” entered the downstroke phase, (e) Mq changes from
Q × {3} × {0,1} to Q × {4} × {0,1} if the counter has become zero again.

Now, we build the ∣Q∣-fold product automaton M ∣Q∣
Empty from all automata Mq with the

start state ((q1,1,0), (q2,1,0), . . . , (q∣Q∣,1,0)), assuming Q = {q1, . . . , q∣Q∣}. This means
that M ∣Q∣

Empty has (8∣Q∣)∣Q∣ many states and ∣Q∣ many counters, each of which makes
at most one turn. Now observe that a word w synchronizes M with empty stacks,
say, in state p if and only if any spread-out variant of w drives M ∣Q∣

Empty into a state((p, i1,0), (p, i2,0), . . . , (p, i∣Q∣,0)) for some ij ∈ {1,4} for all 1 ≤ j ≤ ∣Q∣. Now, de-
fine {((p, i1,0), (p, i2,0), . . . , (p, i∣Q∣,0)) ∣ p ∈ Q, ij ∈ {1,4} for 1 ≤ j ≤ ∣Q∣} as the final
states of M ∣Q∣

Empty. We see that M is synchronizable with empty stacks if and only if
M
∣Q∣
Empty accepts any word. As Gurari and Ibarra have shown in [Gurari and Ibarra, 1981,

Lemma 2], M ∣Q∣
Empty accepts any word if and only if it accepts any word up to length(∣Q∣(8∣Q∣)∣Q∣∣Σ∣)O(∣Q∣) ≤ (∣Q∣(8∣Q∣∣Σ∣)O(∣Q∣)2),1 within the same time bounds. Now, testing

all these words for membership basically needs two counters that are able to capture
numbers of size (∣Q∣(8∣Q∣∣Σ∣)O(∣Q∣)2), which means we need polynomial space in ∣Q∣ and∣Σ∣ to check if M is synchronizable with empty stacks.

By considering M ∣Q∣
Empty with the final states ((p, i1,0), (p, i2,0), . . . , (p, i∣Q∣,0)) for arbi-

trary p ∈ Q and ij ∈ {1,2,3,4}, this way defining an automaton M ∣Q∣
Arb, we can check if M

is synchronizable in the arbitrary stack model also in polynomial space with the same
argument. FromM

∣Q∣
Empty, we can also construct a nondeterministic 1-turn ∣Q∣-counter ma-

chine M ∣Q∣
Same by adding a nondeterministic move from ((p, i1,0), (p, i2,0), . . . , (p, i∣Q∣,0))

for arbitrary p ∈ Q and ij ∈ {1,2,3,4} upon reading some arbitrary but fixed σsync ∈ Σ

to a special state qdec in which state we loop upon reading σsync ∈ Σ, decrementing all
counters at the same time; finally, there is the possibility to move to qf (that is the only
finaly state now) upon reading σsync ∈ Σ if all counters are empty. Notice that also this
automaton M ∣Q∣

Same has (O(∣Q∣))∣Q∣∣Σ∣ many transitions. Thus, using [Gurari and Ibarra,
1981, Lemma 2] we can again conclude that synchronizability in the same stack model

1In the cited lemma, the number of steps of the checking machine is upper-bounded by (ms)O(m),
where m is the number of 1-turn counters and s is the number of transitions of the machine.

17

169

can be checked in polynomial space for M .

Finally, we explain in detail how to build the transition function of Mq from the specifi-
cation of M .

• Whenever there is a transition δ(p, a,�) = (p′,�) in M , Mq can transition from
p to p′ upon reading a, leaving its counter untouched. Formally, this means that
δq((p,1,0), a,�) = ((p′,1,1),�) in Mq. Moreover, for any state r ∈ Q and any letter
b ∈ Σ, δq((r,1,1), b,�) = ((r,1,0),�) in Mq. Notice that in this stage one, Mq

knows that the counter is zero. In particular, any word read in this stage could be
accepted.

• If there is a transition δ(p, a,�) = (p′,�1`) with ` > 0 in M , Mq moves into stage
two. Hence, there is a transition δq((p,1,0), a,�) = ((p′,2,1),�1`) in Mq. This
certifies that we have truly entered a proper upstroke phase.

• We can check that we are in the proper upstroke phase by defining the transitions
as δq((r,2,1), b,1) = ((r,2,0),1) in Mq for any r ∈ Q and any b ∈ Σ.

• Transitions of the form δ(p, a,1) = (p′,1`) with ` > 0 inM letMq stay in stage two.
Hence, there is a transition δq((p,1,0), a,1) = ((p′,2,1),1`) in Mq.

• However, transitions of the form δ(p, a,1) = (p′, ε) inM letMq move in stage three.
We have now truly entered a proper downstroke phase. Hence, there is a transition
δq((p,2,0), a,1) = ((p′,3,1), ε) in Mq.

• We can check that we are in the proper downstroke phase by setting the transition
function as δq((r,3,1), b,1) = ((r,3,0),1) in Mq for any r ∈ Q and any b ∈ Σ.

• We stay within stage three by introducing δq((p,3,0), a,1) = ((p′,3,1),1`) in Mq

for rules δ(p, a,1) = (p′,1`) with ` ∈ {0,1}.
• We will move into stage four once we have arrived at an empty stack again. This
is realized by having transitions δq((r,3,1), b,�) = ((r,4,0),�) in Mq for any r ∈ Q
and any b ∈ Σ.

• Whenever there is a transition δ(p, a,�) = (p′,�) in M , then Mq can transition
from p to p′ upon reading a, leaving its counter untouched, i.e., δq((p,4,0), a,�) =((p′,4,1),�) in Mq. Moreover, for any state r ∈ Q and any letter b ∈ Σ, we have
δq((r,4,1), b,�) = ((r,4,0),�) in Mq. Notice that in this stage four, Mq knows
again that the counter is zero. In particular, any word read in this stage could be
accepted.

This finally concludes the proof.

18

170 Synchronizing Deterministic Push-Down Automata

7 Sequential Transducers

We will now introduce a new concept of synchronization of sequential transducers.2 We
call T = (Q,Σ,Γ, q0, δ, F) a sequential transducer (ST for short) if Q is a finite set of
states, Σ is a finite input alphabet, Γ is a finite output alphabet, q0 is the start state,
δ∶Q × Σ → Q × Γ∗ is a total transition function, and F is a set of final states. We
generalize δ from input letters to words by concatenating the produced outputs, i.e., for
q, q′, q′′ ∈ Q, σ1, σ2 ∈ Σ, γ1, γ2 ∈ Γ∗ and transitions δ(q, σ1) = (q′, γ1), δ(q′, σ2) = (q′′, γ2)
we define δ(q, σ1σ2) = (q′′, γ1γ2). We say that a word w trace-synchronizes a sequential
transducer T if for all states p, q ∈ Q it holds that δ(p,w) = δ(q,w). Intuitively, w brings
all states of T to the same state and produces the same output on all states. Again, we
might neglect start and final states.

Definition 5 (Trace-Sync-Transducer).
Given: Sequential transducer T = (Q,Σ,Γ, δ).
Question: Does there exist a word w ∈ Σ∗ that trace-synchronizes T?

Theorem 9. The problem Trace-Sync-Transducer is undecidable.

Proof. We adapt the construction ofM in Theorem 5 to obtain a sequential transducer T
in the following way: Each time, we push a letter to the stack in QA

i or QB
i , instead we

now output this letter. Whenever we leave the stack unchanged, we now simply do not
produce any output. For the letter a, we output the special letter r on all states in order
to indicate that the machine has been reset. For the state qAfail we output the special
letter A and for qBfail the special letter B, for all input symbols expect a.

We make the following observations for any potential trace-synchronizing word w for T :
(1) w needs to start with a. (2) w needs to contain the sub-word ##. (3) The sub-word
between the first occurrence of ## and the respective last occurrence of a before ##

describes a solution of the PCP instance. (4) If the PCP instance has a solution, one
can construct a trace-synchronizing word for T from that solution.

8 Prospects

It would be interesting to look into the synchronization problem for further automata
models. In view of the undecidability results that we obtained in this paper, a special

2The definitions in the literature are not very clear for finite automata with outputs. We follow
here the name used by Berstel in [Berstel, 1979]; Ginsburg [Ginsburg, 1966] called Berstel’s sequential
transducers generalized machines, but used the term sequential transducer for the nondeterministic
counterpart.

19

171

focus should be to look into deterministic automata classes with a known decidable
inclusion problem, as otherwise it should be possible to adapt our undecidability proofs
for synchronizability to these automata models. To make this research direction more
clear: (a) There are quite efficient algorithms for the inclusion problem for so-called
very simple deterministic pushdown automata, see [Wakatsuki and Tomita, 1993]; (b)
a proper super-class of these languages are so-called NTS languages that also have a
deterministic automaton characterization3 but their inclusion problem is undecidable,
see [Sénizergues, 1985, Boasson and Sénizergues, 1985]. The overall aim of this research
would be to find the borderline between decidable and undecidable synchronizability
and, moreover, within the decidable part, to determine the complexity of this problem.
A step in this research direction has been made in direction of (sub-classes of) visibly
deterministic pushdown automata in [Fernau and Wolf, 2020]. Interestingly enough,
that research line also revealed some cases where synchronizability can be decided in
polynomial time, quite in contrast to the situation found in the present study.

Another approach is to look into variants of synchronization problems for DPDAs, such
as restricting the length of a potential synchronizing word. It follows from the NP-
hardness of this problem for DFAs [Rystsov, 1980, Eppstein, 1990] and the polynomial-
time solvability of the membership problem for DPDAs that for unary encoded length
bounds this problem is NP-complete for DPDAs as well, and contained in EXPTIME
for binary encoded length bounds. The precise complexity of this problem for binary
encoded length bounds will be a topic of future research.

References

[Alur and Madhusudan, 2004] Alur, R. and Madhusudan, P. (2004). Visibly pushdown
languages. In Babai, L., editor, Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 202–211. ACM.

[Arenas et al., 2011] Arenas, M., Barceló, P., and Libkin, L. (2011). Regular languages
of nested words: Fixed points, automata, and synchronization. Theory of Computing
Systems, 49(3):639–670.

[Babari et al., 2016] Babari, P., Quaas, K., and Shirmohammadi, M. (2016). Synchro-
nizing data words for register automata. In Faliszewski, P., Muscholl, A., and Nie-
dermeier, R., editors, 41st International Symposium on Mathematical Foundations of
3This is rather implicit in the literature, which is one of the reasons why we do not present more

details here; one would have to first define the automaton model properly.

20

172 Synchronizing Deterministic Push-Down Automata

Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, volume 58 of
LIPIcs, pages 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Béal and Perrin, 2016] Béal, M.-P. and Perrin, D. (2016). Synchronised Automata, page
213–240. Encyclopedia of Mathematics and its Applications. Cambridge University
Press.

[Berstel, 1979] Berstel, J. (1979). Transductions and Context-Free Languages, volume 38
of Teubner Studienbücher: Informatik. Teubner.

[Boasson and Sénizergues, 1985] Boasson, L. and Sénizergues, G. (1985). NTS lan-
guages are deterministic and congruential. Journal of Computer and System Sciences,
31(3):332–342.

[Böhm and Göller, 2011] Böhm, S. and Göller, S. (2011). Language equivalence of deter-
ministic real-time one-counter automata is nl-complete. In Murlak, F. and Sankowski,
P., editors, Mathematical Foundations of Computer Science 2011 - 36th International
Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume
6907 of Lecture Notes in Computer Science, pages 194–205. Springer.

[Caucal, 2006] Caucal, D. (2006). Synchronization of pushdown automata. In Ibarra,
O. H. and Dang, Z., editors, Developments in Language Theory, 10th International
Conference, DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings,
volume 4036 of Lecture Notes in Computer Science, pages 120–132. Springer.

[Černý, 1964] Černý, J. (1964). Poznámka k homogénnym eksperimentom s konečnými
automatami. Matematicko-fyzikalny Časopis Slovensk, 14(3):208–215.

[Černý, 2019] Černý, J. (2019). A note on homogeneous experiments with finite au-
tomata. Journal of Automata, Languages and Combinatorics, 24(2-4):123–132.

[Chistikov et al., 2019] Chistikov, D., Martyugin, P., and Shirmohammadi, M. (2019).
Synchronizing automata over nested words. Journal of Automata, Languages and
Combinatorics, 24(2-4):219–251.

[Czerwinski et al., 2021] Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., and Ma-
zowiecki, F. (2021). The reachability problem for Petri nets is not elementary. Journal
of the ACM, 68(1):7:1–7:28.

[Doyen et al., 2014] Doyen, L., Juhl, L., Larsen, K. G., Markey, N., and Shirmoham-
madi, M. (2014). Synchronizing words for weighted and timed automata. In 34th Inter-
national Conference on Foundation of Software Technology and Theoretical Computer
Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India, pages 121–132.

21

173

[Eppstein, 1990] Eppstein, D. (1990). Reset sequences for monotonic automata. SIAM
Journal on Computing, 19(3):500–510.

[Fernau and Wolf, 2020] Fernau, H. and Wolf, P. (2020). Synchronization of determin-
istic visibly push-down automata. In Saxena, N. and Simon, S., editors, 40th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa Cam-
pus, Goa, India (Virtual Conference), volume 182 of LIPIcs, pages 45:1–45:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[Friedman, 1976] Friedman, E. P. (1976). The inclusion problem for simple languages.
Theoretical Computer Science, 1(4):297–316.

[Ginsburg, 1966] Ginsburg, S. (1966). The mathematical Theory of Context-Free Lan-
guages. McGraw-Hill.

[Ginsburg and Spanier, 1966] Ginsburg, S. and Spanier, E. H. (1966). Finite-turn push-
down automata. SIAM Journal on Control, 4(3):429–453.

[Greibach, 1978] Greibach, S. A. (1978). Remarks on blind and partially blind one-way
multicounter machines. Theoretical Computer Science, 7:311–324.

[Gurari and Ibarra, 1981] Gurari, E. M. and Ibarra, O. H. (1981). The complexity of
decision problems for finite-turn multicounter machines. Journal of Computer and
System Sciences, 22(2):220–229.

[Higuchi et al., 1995] Higuchi, K., Wakatsuki, M., and Tomita, E. (1995). A polynomial-
time algorithm for checking the inclusion for real-time deterministic restricted one-
counter automata which accept by final state. IEICE Transactions on Information
and Systems, 78-D(8):939–950.

[Kim, 2011] Kim, C. (2011). Quasi-rocking real-time pushdown automata. Theoretical
Computer Science, 412(48):6720–6735.

[Kosaraju, 1982] Kosaraju, S. R. (1982). Decidability of reachability in vector addition
systems (preliminary version). In Lewis, H. R., Simons, B. B., Burkhard, W. A., and
Landweber, L. H., editors, Proceedings of the 14th Annual ACM Symposium on Theory
of Computing, May 5-7, 1982, San Francisco, California, USA, pages 267–281. ACM.

[Martyugin, 2014] Martyugin, P. (2014). Computational complexity of certain problems
related to carefully synchronizing words for partial automata and directing words for
nondeterministic automata. Theory of Computing Systems, 54(2):293–304.

22

174 Synchronizing Deterministic Push-Down Automata

[Matiyasevich and Sénizergues, 2005] Matiyasevich, Y. V. and Sénizergues, G. (2005).
Decision problems for Semi-Thue systems with a few rules. Theoretical Computer
Science, 330(1):145–169.

[Mayr, 1981] Mayr, E. W. (1981). An algorithm for the general Petri net reachability
problem. In Proceedings of the 13th Annual ACM Symposium on Theory of Computing,
May 11-13, 1981, Milwaukee, Wisconsin, USA, pages 238–246. ACM.

[Mehlhorn, 1980] Mehlhorn, K. (1980). Pebbling moutain ranges and its application
of DCFL-recognition. In de Bakker, J. W. and van Leeuwen, J., editors, Automata,
Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherlands,
July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in Computer Science, pages
422–435. Springer.

[Mikami and Yamakami, 2020] Mikami, E. and Yamakami, T. (2020). Synchronizing
pushdown automata and reset words. An article appeared in Japanese as Technical
Report of The Institute of Electonics, Information and Communication Engineers,
COMP2019-54(2020-03), pp. 57–63.

[Minsky, 1961] Minsky, M. L. (1961). Recursive unsolvability of Post’s problem of "Tag"
and other topics in theory of Turing machines. Annals of Mathematics, pages 437–455.

[Neary, 2015] Neary, T. (2015). Undecidability in binary tag systems and the Post
correspondence problem for five pairs of words. In Mayr, E. W. and Ollinger, N.,
editors, 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 649–
661. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Post, 1946] Post, E. L. (1946). A variant of a recursively unsolvable problem. Bulletin
of the American Mathematical Society, 52(4):264–268.

[Rystsov, 1980] Rystsov, I. K. (1980). On minimizing the length of synchronizing words
for finite automata. In Theory of Designing of Computing Systems, pages 75–82.
Institute of Cybernetics of Ukrainian Acad. Sci. (in Russian).

[Rystsov, 1983] Rystsov, I. K. (1983). Polynomial complete problems in automata the-
ory. Information Processing Letters, 16(3):147–151.

[Sandberg, 2005] Sandberg, S. (2005). Homing and synchronizing sequences. In Broy,
M., Jonsson, B., Katoen, J., Leucker, M., and Pretschner, A., editors, Model-Based
Testing of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, pages 5–33.
Springer.

23

175

[Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192.

[Schmitz, 2016] Schmitz, S. (2016). The complexity of reachability in vector addition
systems. ACM SIGLOG News, 3(1):4–21.

[Sénizergues, 1985] Sénizergues, G. (1985). The equivalence and inclusion problems for
NTS languages. Journal of Computer and System Sciences, 31(3):303–331.

[Shirmohammadi, 2014] Shirmohammadi, M. (2014). Qualitative Analysis of Synchro-
nizing Probabilistic Systems. (Analyse qualitative des systèmes probabilistes synchro-
nisants). PhD thesis, École normale supérieure de Cachan, France.

[Shitov, 2019] Shitov, Y. (2019). An improvement to a recent upper bound for synchro-
nizing words of finite automata. Journal of Automata, Languages and Combinatorics,
24(2-4):367–373.

[Starke, 1966] Starke, P. H. (1966). Eine Bemerkung über homogene Experimente. Elek-
tronische Informationsverarbeitung und Kybernetik (Journal of Information Processing
and Cybernetics), 2(4):257–259.

[Starke, 2019] Starke, P. H. (2019). A remark about homogeneous experiments. Journal
of Automata, Languages and Combinatorics, 24(2-4):133–137.

[Szykuła, 2018] Szykuła, M. (2018). Improving the upper bound on the length of the
shortest reset word. In Niedermeier, R. and Vallée, B., editors, 35th Symposium
on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March
3, 2018, Caen, France, volume 96 of LIPIcs, pages 56:1–56:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

[Truthe and Volkov, 2019] Truthe, B. and Volkov, M. V. (2019). Journal of Automata,
Languages and Combinatorics – Essays on the Černý Conjecture. https://www.jalc.
de/issues/2019/issue_24_2-4/content.html. Accessed: 10/1/2020.

[Valiant, 1973] Valiant, L. G. (1973). Decision Procedures for Families of Deterministic
Pushdown Automata. PhD thesis, University of Warwick, Coventry, UK.

[Volkov, 2008] Volkov, M. V. (2008). Synchronizing automata and the Černý conjecture.
In Martín-Vide, C., Otto, F., and Fernau, H., editors, Language and Automata Theory
and Applications, Second International Conference, LATA, volume 5196 of LNCS,
pages 11–27. Springer.

[Wakatsuki and Tomita, 1993] Wakatsuki, M. and Tomita, E. (1993). A fast algorithm
for checking the inclusion for very simple deterministic pushdown automata. IEICE
Transactions on Information and Systems, 76-D(10):1224–1233.

24

176 Synchronizing Deterministic Push-Down Automata

Chapter 10

Synchronization of Deterministic

Visibly Push-Down Automata

Henning Fernau and Petra Wolf.

An extended abstract appeared in the proceedings of FSTTCS 2020:

Leibniz International Proceedings in Informatics (LIPIcs) 182 (2020) pp. 45:1 – 45:15.

DOI: 10.4230/LIPIcs.FSTTCS.2020.45.

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.45

178 Synchronization of Deterministic Visibly Push-Down Automata

Synchronization of Deterministic Visibly Push-Down
Automata

Henning Fernau and Petra Wolf∗

Universität Trier, Germany

Abstract

We generalize the concept of synchronizing words for finite automata, which
map all states of the automata to the same state, to deterministic visibly push-
down automata. Here, a synchronizing word w does not only map all states to the
same state but also fulfills some conditions on the stack content of each run after
reading w. We consider three types of these stack constraints: after reading w, the
stack (1) is empty in each run, (2) contains the same sequence of stack symbols in
each run, or (3) contains an arbitrary sequence which is independent of the other
runs. We show that in contrast to general deterministic push-down automata, it
is decidable for deterministic visibly push-down automata whether there exists a
synchronizing word with each of these stack constraints, more precisely, the prob-
lems are in EXPTIME. Under the constraint (1), the problem is even in P. For
the sub-classes of deterministic very visibly push-down automata, the problem is
in P for all three types of constraints. We further study variants of the synchro-
nization problem where the number of turns in the stack height behavior caused
by a synchronizing word is restricted, as well as the problem of synchronizing a
variant of a sequential transducer, which shows some visibly behavior, by a word
that synchronizes the states and produces the same output on all runs.

1 Introduction

The classical synchronization problem asks, given a deterministic finite automaton (DFA),
whether there exists a synchronizing word that brings all states of the automaton to a sin-
gle state. While this problem is solvable in polynomial time, see [Černý, 1964, Sandberg,

∗The author was supported by DFG-funded project FE560/9-1

1

179

2005, Volkov, 2008], many variants, such as synchronizing only a subset of states [Sand-
berg, 2005], or synchronizing a partial automaton without taking an undefined transition
(called carefully synchronizing) [Martyugin, 2014], are PSPACE-complete. Restricting
the length of a potential synchronizing word by a parameter in the input also yields a
harder problem, namely the NP-complete short synchronizing word problem [Rystsov,
1980, Eppstein, 1990]. The field of synchronizing automata has been intensively stud-
ied over the last years, among others in attempt to verify the famous Černý conjecture
claiming that every synchronizable DFA admits a synchronizing word of quadratic length
in the number of states [Černý, 1964, Černý, 2019, Starke, 1966, Starke, 2019]. The cur-
rently best upper bound on this length is cubic, and only very little progress has been
made, basically improving on the multiplicative constant factor in front of the cubic term,
see [Shitov, 2019, Szykuła, 2018]. More information on synchronization of DFA and the
Černý conjecture can be found in [Volkov, 2008, Béal and Perrin, 2016, Truthe and
Volkov, 2019]. In this work, we want to move away from deterministic finite automata
to more general deterministic visibly push-down automata.1

The synchronization problem has been generalized in the literature to other automata
models including infinite-state systems with infinite branching such as weighted and
timed automata [Doyen et al., 2014, Shirmohammadi, 2014] or register automata
[Babari et al., 2016]. Here, register automata are infinite state systems where a state
consists of a control state and register contents.

Another automaton model, where the state set is enhanced with a possibly infinite
memory structure, namely a stack, is the class of nested word automata (NWAs were
introduced in [Alur and Madhusudan, 2009]), where an input word is enhanced with a
matching relation determining at which pair of positions in a word a symbol is pushed
to and popped from the stack. The class of languages accepted by NWAs is identical to
the class of visibly push-down languages (VPL) accepted by visibly push-down automata
(VPDA) and form a proper sub-class of the deterministic context-free languages. VPDAs
have first been studied by Mehlhorn [Mehlhorn, 1980] under the name input-driven
pushdown automata and became quite popular more recently due to the work by Alur
and Madhusudan [Alur and Madhusudan, 2004], showing that VPLs share several nice
properties with regular languages. For more on VPLs we refer to the survey [Okhotin and
Salomaa, 2014]. In [Chistikov et al., 2019], the synchronization problem for NWAs was
studied. There, the concept of synchronization was generalized to bringing all states to
one single state such that for all runs the stack is empty (or in its start configuration) after

1The term synchronization of push-down automata already occurs in the literature, i.e., in [Caucal,
2006, Arenas et al., 2011], but there the term synchronization refers to some relation of the input
symbols to the stack behavior [Caucal, 2006] or to reading different words in parallel [Arenas et al.,
2011] and is not to be confused with our notion of synchronizing states.

2

180 Synchronization of Deterministic Visibly Push-Down Automata

reading the synchronizing word. In this setting, the synchronization problem is solvable
in polynomial time (again indicating similarities of VPLs with regular languages), while
the short synchronizing word problem (with length bound given in binary) is PSPACE-
complete; the question of synchronizing from or into a subset is EXPTIME-complete.
Also, matching exponential upper bounds on the length of a synchronizing word are
given.

Our attempt in this work is to study the synchronization problem for real-time (no
ε-transitions) deterministic visibly push-down automata (DVPDA) and several sub-
classes thereof, like real-time deterministic very visibly push-down automata (DVVPDA
for short; this model was introduced in [Ludwig, 2019]), real-time deterministic visi-
bly counter automata (DVCA for short; this model appeared a.o. in [Bárány et al.,
2006, Srba, 2009, Bollig, 2016, Hahn et al., 2015, Krebs et al., 2015a, Krebs et al.,
2015b]) and finite turn variants thereof. We want to point out that, despite the equiv-
alence of the accepted language class, the automata models of nested word automata
and visibly push-down automata still differ and the results from [Chistikov et al., 2019]
do not immediately transfer to VPDAs, as for NWAs an input word is equipped with a
matching relation, which VPDAs lack of. In general, the complexity of the synchroniza-
tion problem can differ for different automata models accepting the same language class.
For instance, in contrast to the polynomial time solvable synchronization problem for
DFAs, the generalized synchronization problem for finite automata with one ambiguous
transition is PSPACE-complete, as well as the problem of carefully synchronizing a DFA
with one undefined transition [Martyugin, 2012]. We will not only consider the synchro-
nization model introduced in [Chistikov et al., 2019], where reading a synchronizing word
results in an empty stack on all runs; but we will also consider a synchronization model
where not only the last state of every run must be the same but also the stack content
needs to be identical, as well as a model where only the states needs to be synchronized
and the stack content might be arbitrary. These three models of synchronization have
been introduced in [Mikami and Yamakami, 2020], where length bounds on a synchro-
nizing word for general DPDAs have been studied dependent on the stack height. The
complexity of these three concepts of synchronization for general DPDAs are consid-
ered in [Fernau et al., 2020], where it is shown that synchronizability is undecidable for
general DPDAs and deterministic counter automata (DCA). It becomes decidable for
deterministic partially blind counter automata and is PSPACE-complete for some types
of finite turn DPDAs, while it is still undecidable for other types of finite turn DPDAs.

In contrast, we will show in the following that for DVPDAs and considered sub-classes
hereof, the synchronization problem for all three stack models, with restricted or un-
restricted number of turns, is in EXPTIME and hence decidable. For DVVPDAs and
DVCAs, the synchronization problems for all three stack models (with unbounded num-

3

181

ber of turns) are even in P. Like the synchronization problem for NWAs in the empty
stack model considered in [Chistikov et al., 2019], we observe that the synchronization
problem for DVPDAs in the empty stack model is solvable in polynomial time, whereas
synchronization of DVPDAs in the same and arbitrary stack models is at least PSPACE-
hard. If the number of turns caused by a synchronizing word on each run is restricted,
the synchronization problem becomes PSPACE-hard for all considered automata models
for n > 0 and is only in P for n = 0 in the empty stack model. We will further introduce
variants of synchronization problems distinguishing the same and arbitrary stack mod-
els by showing complementary complexities in these models. For problems considered
in [Fernau et al., 2020], these two stack models have always shared their complexity
status.

2 Fixing Notations

We refer to the empty word as ε. For a finite alphabet Σ, we denote by Σ∗ the set of
all words over Σ and by Σ+ = ΣΣ∗ the set of all non-empty words. For i ∈ N, we set[i] = {1,2, . . . , i}. For w ∈ Σ∗, we denote by ∣w∣ the length of w, by w[i] for i ∈ [∣w∣] the
i’th symbol of w, and by w[i..j] for i, j ∈ [∣w∣] the subword w[i]w[i+1] . . .w[j] of w. We
call w[1..i] a prefix and w[i..∣w∣] a suffix of w. If i < j, then w[j, i] = ε.
We call A = (Q,Σ, δ, q0, F) a deterministic finite automaton (DFA for short) if Q is a
finite set of states, Σ is a finite input alphabet, δ is a transition function Q × Σ → Q,
q0 is the initial state, and F ⊆ Q is the set of final states. The transition function δ is
generalized to words by δ(q,w) = δ(δ(q,w[1]),w[2..∣w∣]) for w ∈ Σ∗. A word w ∈ Σ∗ is
accepted by A if δ(q0,w) ∈ F and the language accepted by A is defined by L(A) = {w ∈
Σ∗ ∣ δ(q0,w) ∈ F}. We extend δ to sets of states Q′ ⊆ Q or to sets of letters Σ′ ⊆ Σ,
letting δ(Q′,Σ′) = {δ(q′, σ′) ∣ (q′, σ′) ∈ Q′ × Σ′}. Similarly, we may write δ(Q′,Σ′) = p
to define δ(q′, σ′) = p for each (q′, σ′) ∈ Q′ ×Σ′. The synchronization problem for DFAs
(called DFA-Sync) asks for a given DFA A whether there exists a synchronizing word
for A. A word w is called a synchronizing word for a DFA A if it brings all states of the
automaton to one single state, i.e., ∣δ(Q,w)∣ = 1.

We callM = (Q,Σ,Γ, δ, q0,�, F) a deterministic push-down automaton (DPDA for short)
if Q is a finite set of states; the finite sets Σ and Γ are the input and stack alphabet,
respectively; δ is a transition function Q × Σ × Γ → Q × Γ∗; q0 is the initial state; � ∈ Γ

is the stack bottom symbol which is only allowed as the first (lowest) symbol in the
stack, i.e., if δ(q, a, γ) = (q′, γ′) and γ′ contains �, then � only occurs in γ′ as its prefix
and moreover, γ = �; and F is the set of final states. We will only consider real-time

4

182 Synchronization of Deterministic Visibly Push-Down Automata

push-down automata and forbid ε-transitions, as can be seen in the definition. Notice
that the bottom symbol can be removed, but then the computation gets stuck.

Following [Chistikov et al., 2019], a configuration of M is a tuple (q, υ) ∈ Q × Γ∗. For a
letter σ ∈ Σ and a stack content υ, with ∣υ∣ = n, we write (q, υ) σÐ→ (q′, υ[1..(n − 1)]γ) if
δ(q, σ, υ[n]) = (q′, γ). This means that the top of the stack υ is the right end of υ. We also
denote by Ð→ the reflexive transitive closure of the union of σÐ→ over all letters in Σ. The
input words on top of Ð→ are concatenated accordingly, so that Ð→= ⋃w∈Σ∗ wÐ→. The
language L(M) accepted by a DPDA M is L(M) = {w ∈ Σ∗ ∣ (q0,�) wÐ→ (qf , γ), qf ∈ F}.
We call the sequence of configurations (q,�) wÐ→ (q′, γ) the run induced by w, starting
in q, and ending in q′.
We will discuss three different concepts of synchronizing DPDAs. For all concepts, we
require that a synchronizing word w ∈ Σ∗ maps all states, starting with an empty stack,
to the same synchronizing state, i.e., for all q, q′ ∈ Q∶ (q,�) wÐ→ (q, υ), (q′,�) wÐ→ (q, υ′).
In other words, for a synchronizing word all runs started on some states in Q end up in
the same state. In addition to synchronizing the states of a DPDA, we will consider the
following two conditions for the stack content: (1) υ = υ′ = �, (2) υ = υ′. We will call (1)
the empty stack model and (2) the same stack model. In the third case, we do not put
any restrictions on the stack content and call this the arbitrary stack model.

As we are only interested in synchronizing a DPDA, we can neglect the start and final
states.

Starting from DPDAs, we define the following sub-classes thereof:

• A deterministic visibly push-down automaton (DVPDA) is a DPDA where the input
alphabet Σ can be partitioned into Σ = Σcall∪Σint∪Σret such that the change in the
stack height is determined by the partition of the alphabet. To be more precise,
the transition function δ is modified such that it can be partitioned accordingly
into δ = δc ∪ δi ∪ δr such that δc∶Q ×Σ → Q × (Γ/{�}) puts a symbol on the stack,
δi∶Q ×Σ → Q leaves the stack unchanged, and δr∶Q ×Σ × Γ → Q reads and pops a
symbol from the stack [Alur and Madhusudan, 2004]. If � is the symbol on top of
the stack, then � is only read and not popped. We call letters in Σcall call or push
letters; letter in Σint internal letters; and letters in Σret return or pop letters. The
language class accepted by DVPDA is equivalent to the class of languages accepted
by deterministic nested word automata (see [Chistikov et al., 2019]).

• A deterministic very visibly push-down automaton (DVVPA) is a DVPDA where
not only the stack height but also the stack content is completely determined by
the input alphabet, i.e., for a letter σ ∈ Σ and all states p, q ∈ Q for δc(p, σ) = (p′, γp)

5

183

and δc(q, σ) = (q′, γq) it holds that γp = γq.
• A deterministic visibly (one) counter automaton (DVCA) is a DVPDA where∣Γ/{�}∣ = 1; note that every DVCA is also a DVVPDA.

We are now ready to define a family of synchronization problems, the complexity of
which will be our subject of study in the following sections.

Definition 1 (Sync-DVPDA-Empty).
Given: DPDA M = (Q,Σ,Γ, δ,�).
Question: Does there exist a word w ∈ Σ∗ that synchronizesM in the empty stack model?

For the same stack model, we refer to the synchronization problem above as Sync-

DVPDA-Same and as Sync-DVPDA-Arb in the arbitrary stack model. Variants
of these problems are defined by replacing the DVPDA in the definition above by a
DVVPDA, and DVCA. If results hold for several stack models or automata models,
then we summarize the problems by using set notations in the corresponding state-
ments. For the problems Sync-DVPDA-Same and Sync-DVPDA-Arb, we introduce
two further refined variants of these problems, denoted by the extension -Return and
-NoReturn, where for all input DVPDA in the former variant Σret ≠ ∅ holds, whereas
in the latter variant Σret = ∅ holds. In the following, these variants reveal insights in
the differences between synchronization in the same stack and arbitrary stack models, as
well as connections to a concept of trace-synchronizing a sequential transducer showing
some visibly behavior.

We will further consider synchronization of these automata classes in a finite-turn setting.
Finite-turn push-down automata were introduced in [Ginsburg and Spanier, 1966]. We
adopt the definition in [Valiant, 1973]. For a DVPDAM , an upstroke ofM is a sequence
of configurations induced by an input word w such that no transition decreases the
stack-height. Accordingly, a downstroke of M is a sequence of configurations in which
no transition increases the stack-height. A stroke is either an upstroke or downstroke.
A DVPDA M is an n-turn DVPDA if for all w ∈ L(M) the sequence of configurations
induced by w can be split into at most n + 1 strokes. Especially, for 1-turn DVPDAs,
each sequence of configurations induced by an accepting word consists of one upstroke
followed by at most one downstroke. Two subtleties arise when translating this concept
to synchronization: (a) there is no initial state so that there is no way to associate a stroke
counter with a state, and (b) there is no language of accepted words that restricts the set
of words on which the number of strokes should be limited. Hence, in the synchronization
setting the finite turn property is not a property of the push-down automaton but rather
of the word applied to all states in parallel. We therefore generalize the concept of
finite-turn DVPDAs to finite-turn synchronization for DVPDAs as follows.

6

184 Synchronization of Deterministic Visibly Push-Down Automata

class of automata empty stack model same stack model arbitrary stack model
DVPDA P PSPACE-compl PSPACE-hard
DVPDA-NoReturn P PSPACE-compl P
DVPDA-Return P P PSPACE-hard
n-Turn-Sync-DVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVPDA P PSPACE-compl PSPACE-compl
DVVPDA P P P
n-Turn-Sync-DVVPDA PSPACE-hard PSPACE-hard PSPACE-hard
0-Turn-Sync-DVVPDA P PSPACE-compl PSPACE-compl
DVCA P P P
n-Turn-Sync-DVCA PSPACE-hard PSPACE-hard PSPACE-hard
1-Turn-Sync-DVCA PSPACE-compl PSPACE-compl PSPACE-compl
0-Turn-Sync-DVCA P PSPACE-compl PSPACE-compl

Table 1: Complexity status of the synchronization problem for different classes of deter-
ministic real-time visibly push-down automata in different stack synchronization modes.
For the n-turn synchronization variants, n takes all values not explicitly listed. All our
problems are in EXPTIME.

Definition 2. n-Turn-Sync-DVPDA-Empty

Given: DVPDA M = (Q,Σ,Γ, δ, q0,�, F).
Question: Is there a synchronizing word w ∈ Σ∗ in the empty stack model, such that for
all states q ∈ Q, the sequence of configurations (q,�) wÐ→ (q,�) consists of at most n + 1

strokes?

We call such a synchronizing word w an n-turn synchronizing word for M . We define
n-Turn-Sync-DVPDA-Same and n-Turn-Sync-DVPDA-Arb accordingly for the
same stack and arbitrary stack model. Further, we extend the problem definition to
other classes of automata such as real-time DVVPDAs, and DVCAs. Table 1 summarizes
our results, obtained in the next sections, on the complexity status of these problems
together with the above introduced synchronization problems.

Finally, we introduce two PSPACE-complete problems for DFAs to reduce from later.

Definition 3 (DFA-Sync-Into-Subset (PSPACE-complete [Rystsov, 1983])).
Given: DFA A = (Q,Σ, δ), subset S ⊆ Q.
Question: Is there a word w ∈ Σ∗ such that δ(Q,w) ⊆ S?
Definition 4 (DFA-Sync-From-Subset (PSPACE-complete [Sandberg, 2005])).
Given: DFA A = (Q,Σ, δ) with S ⊆ Q.
Question: Is there a word w ∈ Σ∗ that synchronizes S, i.e., for which ∣δ(S,w)∣ = 1 is true?

7

185

3 DVPDAs – Distinguishing the Stack Models

We start with some positive result showing that we come down from the undecidability of
the synchronization problem for general DPDAs in the empty set model to a polynomial
time solvable version by considering visibly DPDAs.

Theorem 1. The problems Sync-DVPDA-Empty, Sync-DVCA-Empty, and Sync-

DVVPDA-Empty are decidable in polynomial time.

Proof. We prove the claim for Sync-DVPDA-Empty as the other automata classes
are sub-classes of DVPDAs. Let M = (Q,Σcall ∪Σint ∪Σret,Γ, δ,�) be a DVPDA. First,
observe that if Σret is empty, then any synchronizing word w for M in the empty stack
model cannot contain any letter from Σcall. Hence, M is basically a DFA and for DFAs
the synchronization problem is in P [Černý, 1964, Volkov, 2008, Sandberg, 2005]. From
now on, assume Σret ≠ ∅. We show that a pair argument similar to the one for DFAs
can be applied, namely that M is synchronizable in the empty stack model if and only
if every pair of states p, q ∈ Q can be synchronized in the empty stack model. The only
if direction is clear as every synchronizing word for Q also synchronizes each pair of
states. For the other direction, observe that since M is a DVPDA, the stack height of
each path starting in any state of M is predefined by the sequence of input symbols.
Hence, if we focus on the two runs starting in p, q and ensure that their stacks are empty
after reading a word w, then also the stacks of all other runs starting in other states in
parallel are empty after reading w. Therefore, we can successively concatenate words
that synchronize some pair of active states in the empty stack model and end up with a
word that synchronizes all states of M in the empty stack model.

In order to determine if a pair of states p, q ∈ Q can be synchronized in the empty stack
model, we build the following product automaton M ×M[p, q] = (Q×Q∪Q,Σcall ∪Σint ∪
Σret,Γ, δ2, (p, q),�,Q). For all states in (r, s) ∈ Q ×Q for which r ≠ s, δ2 simulates the
actions of δ on r in the first component and the actions of δ on s in the second component.
For states (r, r) ∈ Q ×Q, this is also the case for all transitions except for zero-tests of
the stack, as here we map to the corresponding state r ∈ Q. For Q, δ2, restricted to Q,
is the same as δ. Clearly, M ×M[p, q] accepts all words that have wσr as a prefix,
for which w synchronizes the states p and q in M in the empty stack model and σr is
any return letter in Σret that checks the empty stack condition. Further, for all pairs
of states p, q, M ×M[p, q] is a DVPDA. As the emptiness problem for DVPDAs is in P
[Alur and Madhusudan, 2004], we can build and test all product automata M ×M[p, q]
for non-emptiness in polynomial time.

Does this mean everything is easy and we are done? Interestingly, the picture is not that

8

186 Synchronization of Deterministic Visibly Push-Down Automata

simple, as considering the same and arbitrary stack models shows.

Theorem 2. The problem Sync-DVPDA-Same is PSPACE-hard.

Proof. We reduce from DFA-Sync-Into-Subset. Let A = (Q,Σ, δ) be a DFA and
S ⊆ Q. We construct from A a DVPDA M = (Q ∪ {qS},Σcall ∪Σint ∪Σret,{,,/,�}, δ′ =
δ′c ∪ δ′i ∪ δ′r,�) with qS ∉ Q, Σcall = {a}, Σint = Σ, Σret = ∅ and Σcall ∩ Σint = ∅. The
transition function δ′i agrees with δ on all letters in Σint. For qS, we set δ′c(qS, a) = (qS,,)
and δ′i(qS, σ) = qS for all σ ∈ Σint. For q ∈ S, we set δ′c(q, a) = (qS,,), and for q ∉ S,
δ′c(q, a) = (q,/).
Note that qS is a sink-state and can only be reached from states in S with a transition by
the call-letter a. For states not in S, the input letter a pushes an / on the stack which
cannot be pushed to the stack by any letter on a path starting in qS. Hence, in order
to synchronize M in the same stack model, a letter a might only and must be read in a
configuration where only states in S ∪ {qS} are active. Every word w ∈ Σ∗

int that brings
M in such a configuration also synchronizes Q in A into the set S.

From the proof of Theorem 2, we can conclude the next results by observing that a
DVPDA without any return letter cannot make any turn.

Corollary 1. Sync-DVPDA-Same-NoReturn and 0-Turn-Sync-DVPDA-Same

are PSPACE-hard.

In contrast with the two previous results, Sync-DVPDA-Same is solvable in polynomial
time if we have the promise that Σret ≠ ∅.
Theorem 3. Sync-DVPDA-Same-Return is in P.

Proof. We prove the claim by straight reducing to Sync-DVPDA-Empty with the
identity function. If a DVPDA M with Σret ≠ ∅ can be synchronized in the same stack
model with a synchronizing word w, then w can be extended to ww′ where w′ ∈ Σ∗

ret

empties the stack. As M is deterministic and complete, w′ is defined on all states. As
after reading w, the stack content on all paths is the same, reading w′ extends all paths
with the same sequence of states. Conversely, a word w synchronizing a DVPDAM with
Σret ≠ ∅ in the empty stack model also synchronizes M in the same stack model.

The arbitrary stack model requires the most interesting construction in the following
proof.

Theorem 4. Sync-DVPDA-Arb is PSPACE-hard.

9

187

Proof. We give a reduction from the PSPACE-complete problem DFA-Sync-From-

Subset. Let A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DVPDA
M = (Q,Σcall ∪Σint ∪Σret,Q∪ {�}, δ′ = δ′c ∪ δ′i ∪ δ′r,�) where all unions in the definition of
M are disjoint. Let Σcall = Σ, Σint = ∅, and Σret = {r} with r ∉ Σ.

For states s ∈ S, we set δ′r(s, r,�) = s and for states q ∈ Q/S, we set δ′r(q, r,�) = t for some
arbitrary but fixed t ∈ S. For states p, q ∈ Q, we set δ′r(q, r, p) = p.
For each call letter σ ∈ Σcall, we set for q ∈ Q, δ′c(q, σ) = (δ(q, σ), q).
First, assume w is a word that synchronizes the set S in the DFA A. Then, it can easily
be observed that rw is a synchronizing word for M in the arbitrary stack model.

Now, assume w is a synchronizing word for M in the arbitrary stack model. If w ∈ Σ∗
call,

then w is also a synchronizing word for A and especially synchronizes the set S in A.
(*) Next, assume w contains some letters r. The action of r is designed such that it
maps Q to the set S if applied to an empty stack and otherwise gradually undoes the
transitions performed by letters from Σcall. This is possible as each letter σ ∈ Σcall stores
its pre-image on the stack when σ is applied. Further, r acts as the identity on the states
in S if applied to an empty stack. Hence, whenever the stacks are empty while reading
some word, all states in S are active.

Hence, if σr is a subword of a synchronizing word w = uσrv of M , with σ ∈ Σcall, then
w′ = uv is also a synchronizing word of M . This justifies the set of rewriting rules
R = {σr → ε ∣ σ ∈ Σcall}. Now, consider a synchronizing word w of M where none of
the rewriting rules from R applies, and, which by (*) contains some letter r. Hence,
w ∈ {r}∗Σ∗

call. By (*), w = rkv, with k > 0, and v ∈ Σ∗
call. Then, w′ = rv is also a

synchronizing word of M , because for all states q ∈ Q, M is in the same configuration
after reading r, starting in configuration (q,�), as after reading rr. But as only (and
all) states from S are active after reading r, v is also a word in Σ∗ that synchronizes the
set S in A.

Observe that in the construction above, Σret ≠ ∅ for all input DFAs. The next corollary
follows from Theorem 4 and should be observed together with the next theorem in
contrast to Theorem 3 and Corollary 1.

Corollary 2. Sync-DVPDA-Arb-Return is PSPACE-hard.

Theorem 5. Sync-DVPDA-Arb-NoReturn ≡ DFA-Sync.

Proof. Let M be a DVPDA with empty set of return symbols. As there is no return-
symbol, the transitions of M cannot depend on the stack content. Hence, we can redis-

10

188 Synchronization of Deterministic Visibly Push-Down Automata

tribute the symbols in Σcall into Σint and obtain a DFA. The converse is trivial.

If we move from deterministic visibly push-down automata to even more restricted
classes, like deterministic very visibly push-down automata or deterministic visibly counter
automata, the three stack models do no longer yield synchronization problems with dif-
ferent complexities. Instead, all three models are equivalent, as stated next. Hence, their
synchronization problems can be solved by the pair-argument presented in Theorem 1
in polynomial time.

Theorem 6. Sync-DVCA-Empty ≡ Sync-DVCA-Same ≡ Sync-DVCA-Arb.
Sync-DVVPDA-Empty ≡ Sync-DVVPDA-Same ≡ Sync-DVVPDA-Arb.

Proof. First, note that every DVCA is also a DVVPDA. If for a DVVPDA Σret ≠ ∅, then
we can empty the stack after synchronizing the state set, as the very visibly conditions
ensures that the contents of the stacks on all runs coincide. As the automaton is deter-
ministic, all transitions for letters in Σret are defined on each state. As the stack content
on all runs coincides in every step, the arbitrary stack model is identical to the same
stack model and hence equivalent to the empty stack model. If Σret = ∅, then we can
reassign Σcall to Σint in order to reduce from the same-stack and arbitrary stack to the
empty stack variant, as transitions cannot depend on the stack content which is again
the same on all runs due to the very visibly condition.

4 Restricting the Number of Turns Makes Synchro-

nization Harder

Let us now restrict the number of turns a synchronizing word may cause on any run.
Despite the fact that we are hereby restricting the considered model even further, the
synchronization problem becomes even harder, in contrast to the previous section.

Theorem 7. For every fixed n ∈ N with n > 0, the problems n-Turn-Sync-DVCA-

Same and n-Turn-Sync-DVCA-Arb are PSPACE-hard.

Proof. We reduce from the PSPACE-complete problem DFA-Sync-Into-Subset. Let
A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DVCA M = (Q ∪ {qsync} ∪{qstalli ∣ 0 ≤ i ≤ n},Σcall∪Σint∪Σret,{1,�}, δ′ = δ′c∪δ′i ∪δ′r,�}), where all unions are disjoint.
We set Σint = Σ, Σcall = {a} and Σret = {b}. For all internal letters, δ′i agrees with δ on all
states in Q. For the letter a, we set for all q ∈ S, δ′c(q, a) = (qstall0 ,1) and for all q ∈ Q/S,

11

189

we set δ′c(q, a) = (q,1). For b, we loop in every state in Q. For qsync, we loop with every
letter in qsync (incrementing the counter with a and decrementing it with b).

Let r be an arbitrary but fixed state in Q. For the states qstalli , we set for i < n,
δ′c(qstalli , a) = (qstalli ,1). Further, for even index i < n, we set δ′r(qstalli , b,1) = qstalli+1 and
δ′r(qstalli , b,�) = r. For odd index i < n, we set δ′r(qstalli , b,1) = r, and δ′r(qstalli , b,�) = qstalli+1 .
For even n, let δ′c(qstalln , a) = (qsync,1), δ′r(qstalln , b,1) = r, and δ′r(qstalln , b,�) = r. For
odd n, let δ′c(qstalln , a) = (qstalln ,1), δ′r(qstalln , b,1) = r, and δ′r(qstalln , b,�) = qsync. All other
transitions (on internal letters) act as the identity.

Observe that the state qsync must be the synchronizing state of M , since it is a sink
state. In order to reach qsync from any state in Q, the automaton must pass through
all the states qstalli for all 0 ≤ i ≤ n, by construction. Since we can only pass from a
state qstalli to qstalli+1 with an empty or non-empty stack in alternation, passing through
all states qstalli , for 0 ≤ i ≤ n, forces M to make n turns. For even n, the last upstroke is
enforced by passing from qstalln to qsync by explicitly increasing the stack. As M is only
allowed to make n turns while reading the n-turn synchronizing word it follows that any
of the states qstalli might be visited at most once, as branching back into Q by taking
a transition that maps to r would force M to go through all states qstalli again, which
exceeds the allowed number of strokes. Note that only counter values of at most one
are allowed in any run which is currently in a state in qstalli as otherwise the run will
necessarily branch back into Q later on.2 Especially, this is the case for qstall0 which
ensures that each n-turn synchronizing word has first synchronized Q into S before the
first letter a is read, as otherwise qstall0 is reached with a counter value greater than 1,
or M has already made a turn in Q and hence cannot reach qsync anymore.

In the construction above, for odd n, each run enters the synchronizing state with an
empty stack (*). For even n, each run enters the synchronizing state with a counter
value of 1. The visibly condition, or more precisely very visibly condition as we are
considering DVCAs, tells us that at each time while reading a synchronizing word, the
stack content of every run is identical. In particular, this is the case at the point when
the last state enters the synchronizing state and, hence, any n-turn synchronizing word
for M is a synchronizing word in both the arbitrary and the same stack models.

By observing that in the empty stack model allowing n even turns is as good as allowing(n − 1) turns, essentially (*) from the previous proof yields the next result.

Corollary 3. For every fixed n ∈ N, with n > 0, the problem n-Turn-Sync-DVCA-

Empty is PSPACE-hard.
2In some states, such as qstalln for even n, it is simply impossible to have a higher counter value.

12

190 Synchronization of Deterministic Visibly Push-Down Automata

Proof. Since we need to synchronize with an empty stack, for even n, the last upstroke
cannot be performed. Hence, for even n, every DVCA M can be synchronized by an
n-turn synchronizing word if and only if M can be synchronized by an (n − 1)-turn
synchronizing word. As for odd n in the construction above, every n-turn synchronizing
word synchronized M in the empty stack model, the claim follows from the proof in
Theorem 7.

Corollary 4. For every fixed n ∈ N, with n > 0, the problems n-Turn-Sync-DVPDA

and n-Turn-Sync-DVVPDA in the empty, same, and arbitrary stack models are
PSPACE-hard.

Theorem 8. 0-Turn-Sync-DVPDA-Empty ≡ DFA-Sync.

Proof. The visibly condition and the fact that we can only synchronize with an empty
stack mean that we cannot read any letter from Σcall, hence we cannot use the stack
at all. Delete (a) all transitions with a symbol from Σcall and (b) all transitions with a
symbol from Σret and a non-empty stack. Then, assigning the elements in Σret to Σint

gives us a DFA.

In contrast to the empty stack model, for the same and arbitrary stack model the finite
turns variant of the synchronization problem remains PSPACE-hard also for zero turns.

Theorem 9. The problems 0-Turn-Sync-DVCA-{Same, Arb} are PSPACE-hard.

Proof. We give a reduction from the PSPACE-complete problem DFA-Sync-From-

Subset. Let A = (Q,Σ, δ) be a DFA with S ⊆ Q. We construct from A a DVCA
M = (Q,Σcall ∪ Σint ∪ Σret,{1,�}, δ′ = δ′c ∪ δ′i ∪ δ′r,�). We set Σcall = Σ, Σint = ∅, and
Σret = {b}. For all q ∈ Q and σ ∈ Σcall, we set δ′c(q, σ) = (δ(q, σ),1). For all states q ∈ Q/S,
we set δ′r(q, b,�) = s for some arbitrary but fixed state s ∈ S. All other transitions act as
the identity.

Note that the 0-turn condition only allows us to read the letter b before any letter in
Σcall has been read, as afterwards b would decrease the stack after it has been increased.
Therefore, every synchronizing word for M in the same and arbitrary stack models
also synchronizes S in Q by either synchronizing the whole set Q without using any b
transition, or it brings Q in exactly the set S with the first letter b and continues to
synchronize S.

Corollary 5. The problems 0-Turn-Sync-DVVPDA-{Same, Arb}, and 0-Turn-

Sync-DVPDA-{Same, Arb} are PSPACE-hard.

13

191

5 (Non-)Tight Upper Bounds

In this section, we will prove that at least all considered problems are decidable (in
contrast to non-visibly DPDAs and DCAs, see [Fernau et al., 2020]) by giving expo-
nential time upper bounds. We will also give some tight PSPACE upper bounds for
some PSPACE-hard problems discussed in the previous section, but for other previously
discussed problems, a gap between PSPACE-hardness and membership in EXPTIME re-
mains.

Theorem 10. All problems listed in Table 1 are in EXPTIME.

Proof. We show the claim explicitly for Sync-DVPDA-Same, Sync-DVPDA-Arb,
n-Turn-Sync-DVPDA-Empty, n-Turn-Sync-DVPDA-Same, and n-Turn-Sync-

DVPDA-Arb. The other results follow by inclusion of automata classes.

Let M = (Q,Σcall ∪ Σint ∪ Σret,Γ, δ,�) be a DVPDA. We construct from M the ∣Q∣-fold
product DVPDAM ∣Q∣ with state set Q∣Q∣, consisting of ∣Q∣-tuples of states, and alphabet
Σcall∪Σint∪Σret. Since M is a DVPDA, for every word w ∈ (Σcall∪Σint∪Σret)∗, the stack
heights on runs starting in different states in Q is equal at every position in w. Hence,
we can multiply the stacks to obtain the stack alphabet Γ∣Q∣ for M ∣Q∣. For the transition
function δ∣Q∣ (split up into δ∣Q∣c ∪ δ∣Q∣i ∪ δ∣Q∣r) of M ∣Q∣, we simulate δ independently on every
state in an ∣Q∣-tuple, i.e., for (q1, q2, . . . , qn) ∈ Q∣Q∣ and letters σc ∈ Σcall, σi ∈ Σint, σr ∈ Σret,
we set

• δ
∣Q∣
c ((q1, q2, . . . , qn), σc) = ((q′1, q′2, . . . , q′n), (γ1, γ2, . . . , γn)) if δ(qj, σc) = (q′j, γj)
for j ∈[n];

• δ
∣Q∣
i ((q1, q2, . . . , qn), σi) = (δ(q1, σi), δ(q2, σi), . . . , δ(qn, σi));

• δ
∣Q∣
r ((q1, q2, . . . , qn), σr, (γ1, γ2, . . . , γn)) = (δ(q1, σr, γ1), δ(q2, σr, γ2), . . . , δ(qn, σr, γn)).

The bottom symbol of the stack is the ∣Q∣-tuple (�,�, . . . ,�). Let p1, p2, . . . , pn be an
enumeration of the states in Q and set (p1, p2, . . . , pn) as the start state of M ∣Q∣.
For Sync-DVPDA-Arb, set {(q, q, . . . , q) ∈ Q∣Q∣ ∣ q ∈ Q} as the final states for M ∣Q∣.
Clearly, for Sync-DVPDA-Arb, M ∣Q∣ is a DVPDA and the words accepted byM ∣Q∣ are
precisely the synchronizing words for M in the arbitrary stack model. As the emptiness
problem can be decided for visibly push-down automata in time polynomial in the size
of the automaton [Alur and Madhusudan, 2004], the claim follows observing that M ∣Q∣
is exponentially larger than M .

14

192 Synchronization of Deterministic Visibly Push-Down Automata

For Sync-DVPDA-Same, we produce a DVPDA M
∣Q∣
same by enhancing the automa-

ton M ∣Q∣ with three additional states qcheck, qfin, and qfail and an additional new re-
turn letter r and set qfin as the single accepting state of M ∣Q∣

same, while the start state
coincides with the the start state of M ∣Q∣. For states (q1, q2, . . . , qn) ∈ Q∣Q∣, we set
δ
∣Q∣
r ((q1, q2, . . . , qn), r, (γ1, γ2, . . . , γn)) = qcheck if qi = qj and γi = γj, γi ≠ � for all i, j ∈ [n].
We set δ∣Q∣r ((q1, q2, . . . , qn), r, (�,�, . . . ,�)) = qfin if qi = qj for all i, j ∈ [n]. For all
other cases, we map with r to qfail. We let the transitions for qfail be defined such
that qfail is a non-accepting trap state for all alphabet symbols. For qcheck, we set
δ
∣Q∣
r (qcheck, r, (γ1, γ2, . . . , γn)) = qcheck if γi = γj ≠ � for all i, j ∈ [n]. Further, we set
δ
∣Q∣
r (qcheck, r, (�,�, . . . ,�)) = qfin and map with r to qfail in all other cases. The state qcheck
also maps to qfail with all input symbols other than r. We let the transitions for qfin be
defined such that qfin is an accepting trap state for all alphabet symbols.

Clearly, for Sync-DVPDA-Same M ∣Q∣
same is a DVPDA and the words accepted by M ∣Q∣

same

are precisely the synchronizing words for M in the same stack model, potentially pro-
longed by a sequence of r’s, as the single accepting state qfin can only be reached from
a state in Q∣Q∣ where the states are synchronized and the stack content is identical for
each run (which is checked in the state qcheck). As the size of M

∣Q∣
same is exponential in the

size of M , we get the claimed result as in the previous case.

For the n-Turn synchronization problems, we have to modify the previous construction
by adding a stroke counter similar as in the proof of Theorem 7.

For the problems n-Turn-Sync-DVPDA in the empty, same, and arbitrary stack mod-
els, we enhance in M ∣Q∣ each ∣Q∣-tuple with an additional index I ∈ {0,1, . . . , n + 1},
i.e., the basic set of states is now Q∣Q∣ × {0,1, . . . , n + 1}. We further add for all three
models the non-accepting trap state qfail to the set of states. For each (∣Q∣ + 1)-tuple,
we implement the transition function δ∣Q∣i of M ∣Q∣ for internal letters in Σint as before by
keeping the value of the index I in each transition. For call letters in Σcall, we realize δ

∣Q∣
c

as before for state-tuples with index I < n + 1 by simulation δ on the individual states
and setting in every image I = I + 1 if I is even, and keeping the value of I if I is odd.
For tuples with index I = n + 1, we proceed as before for smaller index if n + 1 is odd,
while for even n + 1 we map with a call letter to the state qfail. For the return letters
in Σret, we realize δ∣Q∣r for pairs of states in Q∣Q∣ × {1,2, . . . , n + 1} and bottom of stack
symbol (�,�, . . . ,�) as before by simulating δ on the individual states and keeping the
value of I. For all other stack symbols, we realize δ∣Q∣r as before for state-tuples with
index 0 < I < n + 1 by simulation δ on the individual states and keeping the value of I if
I is even, and setting in every image I = I + 1 if I is odd. For tuples with I = n + 1, we
proceed as before if n + 1 is even. For states with index I = 0 or I = n + 1 for odd n + 1,
we map with each return letter to qfail for stack symbols other than the bottom of stack

15

193

symbol. In all three models we set (p1, p2, . . . , pn,0) as the start state, with p1, p2, . . . , pn

being an enumeration of the states in Q.

For n-Turn-Sync-DVPDA-Arb, we set {(q, q, . . . , q, I) ∣ q ∈ Q, I ∈ {0,1, . . . , n + 1}} ⊂
Q∣Q∣ × {0,1, . . . , n + 1} as the set of final states.

For n-Turn-Sync-DVPDA-Empty, we set the additional trap state qfin as the single
accepting state and add a new return letter r with which we map to qfin for states(q, q, . . . , q, I) ∈ Q∣Q∣ × {0,1, . . . , n+ 1} with the bottom-of-stack symbol and to qfail for all
other stack symbols or states.

For n-Turn-Sync-DVPDA-Same, we add the two states qcheck and qfin to M ∣Q∣ and
set qfin as the single accepting state. Again, we add a new return letter r. For states(q, q, . . . , q, I) with I ∈ {0,1, . . . , n + 1} and symbol (γ1, γ2, . . . , γn) on top of the stack,
which is not the bottom-of-stack symbol, we map with r to qcheck if all entries γi in the
stack symbol tuple are identical. If instead the bottom-of-stack symbol is on top of the
stack, we map with r for states (q, q, . . . , q, I) directly to qfin. For all other states and
stack symbols, r maps to qfail. For qcheck, we stay in qcheck with the letter r if we see a
symbol (γ, γ, . . . , γ) on the stack with γ ∈ Γ/{�} and map with r to qfin if we see the
bottom-of-stack symbol. For all other stack symbols, r maps qcheck to qfail. Also, all input
letter other than r maps qcheck to qfail. For qfin, we define all transitions such that qfin is
a trap state.

In all three cases, the constructed automaton is a DVPDA that accepts precisely the
n-turn synchronizing words for M (potentially prolonged by a sequence of r’s) in the
respective stack model. As the constructed automaton is of size O((∣Q∣∣Γ∣)∣Q∣) in all three
cases, we can decide whether the constructed automaton accepts at least one word in
time exponential in the description of M .

Remark 1. It cannot be expected to show PSPACE-membership of synchronization prob-
lems concerning DVPDAs using a ∣Q∣-fold product DVPDA as the resulting automata is
exponentially large in the size of the DVPDA that is to be synchronized and the empti-
ness problem for DVPDAs is P-complete [Okhotin and Salomaa, 2014]. Rather, one
would need a separate membership proof. We conjecture that a PSPACE-membership
proof similar to the one presented in [Chistikov et al., 2019] for the short synchronizing
word problem can be obtained if exponential upper bounds for the length of shortest
synchronizing words for DVPDAs in the respective models can be obtained. For the
empty stack model, an exponential upper bound on the length of a shortest synchroniz-
ing word should follow by applying analogous arguments as in [Chistikov et al., 2019,
Theorem 6]. For the same and arbitrary stack model, the question is open as we cannot
reduce the problem to considering pairs like in the empty stack model.

16

194 Synchronization of Deterministic Visibly Push-Down Automata

Theorem 11. The problems 0-Turn-Sync-{DVPDA, DVVPDA, DVCA}-Same are
in PSPACE.

Proof. Let M = (Q,Σcall ∪ Σint ∪ Σret,Γ, δ = δc ∪ δi ∪ δr,�) be a DVPDA. For the same
stack model, the 0-turn condition forbids us to put in simultaneous runs different letters
on the stack at any time while reading a synchronizing word, as we cannot exchange
symbols on the stack with visible PDAs. Note that this is a dynamic runtime-behavior
and does not imply that M is necessarily very visibly. Further, the 0-turn and visibility
condition enforces that at each step the next transition does not depend on the stack
content if the symbol on top of the stack is not �. We construct fromM a partial ∣Q∣-fold
product DFA M ∣Q∣ with state set Q∣Q∣ × {0,1}, consisting of ∣Q∣-tuples of states with an
additional bit of information which will indicate whether the stack is still empty, and
alphabet Σcall∪Σint∪Σret. For the transition function δ∣Q∣ ofM ∣Q∣, we simulate for a state(q1, q2, . . . , qn, b) with q1, q2, . . . , qn ∈ Q, b ∈ {0,1} and letter σ, δ (by restricting the image
to the first component in Q for call letters) on the individual states qi, qj with i, j ∈ [n]
in the tuple if (1) σ ∈ Σret and b = 0, (2) σ ∈ Σint, or (3) σ ∈ Σcall and for δc(qi, σ) = (q′i, γi),
δc(qj, σ) = (q′j, γj) it holds that γi = γj. In case (1) and (2), we keep the value of b
in the transition and in case (3), we ensure b = 1 in the image of the transition. The
size of the state graph of M ∣Q∣ is bounded by O(∣Q∣∣Q∣). Clearly, the DVPDA M can be
synchronized by a 0-turn synchronizing word in the same stack model if and only if there
is a path in the state graph ofM ∣Q∣ from the state (q1, q2, . . . , qn,0) for Q = {q1, q2, . . . , qn}
to some state in {(qi, qi, . . . , qi, b) ∣ i ∈ [n], b ∈ {0,1}}. These 2∣Q∣ reachability tests can
be performed in NPSPACE = PSPACE [Savitch, 1970]. The claim for the other problems
follows by inclusion of automata classes.

Corollary 6. The problems Sync-DVPDA-Same-NoReturn and Sync-DVPDA-

Same are in PSPACE.

Proof. Consider first Sync-DVPDA-Same-NoReturn. Let M = (Q,Σcall ∪ Σint ∪
Σret,Γ, δ,�) be a DVPDA with Σret = ∅. As we have no return letter, any synchro-
nizing word for M is also a 0-turn synchronizing word and hence, the claim follows with
Theorem 11.

Consider now Sync-DVPDA-Same. For a DVPDAM with return alphabet Σret, either
Σret = ∅, in which case the previous argument applies, or Σret ≠ ∅, which allows us to
even conclude membership in P by Theorem 3.

Theorem 12. The problems 0-Turn-Sync-{DVPDA, DVVPDA, DVCA}-Arb, and
1-Turn-Sync-DVCA-{Empty, Same, Arb} are in PSPACE.

17

195

Proof. The claim follows from [Fernau et al., 2020, Theorem 16 & 17] by inclusion of
automata classes.

6 Sequential Transducers

In [Fernau et al., 2020], the concept of trace-synchronizing a sequential transducer has
been introduced. We want to extend this concept to sequential transducers showing
some kind of visible behavior regarding their output, inspired by the predetermined
stack height behavior of DVPDAs. We call T = (Q,Σ,Γ, q0, δ, F) a sequential transducer
(ST for short) if Q is a finite set of states, Σ is an input alphabet, Γ is an output
alphabet, q0 is the start state, δ∶Q × Σ → Q × Γ∗ is a total transition function, and F

collects the final states. We generalize δ from input letters to words by concatenating
the produced outputs. T is called a visibly sequential transducer (VST for short) [or very
visibly sequential transducer (VVST for short)] if for each σ ∈ Σ and for all q1, q2 ∈ Q and
γ1, γ2 ∈ Γ∗, it holds that δ(q1, σ) = (q′1, γ1) and δ(q2, σ) = (q′2, γ2) implies that ∣γ1∣ = ∣γ2∣ [or
that γ1 = γ2, respectively]. A VVST T is thereby computing the same homomorphism hT ,
regardless of which states are chosen as start and final states (*). Hence, if AT is the
underlying DFA (ignoring any outputs), then hT (L(AT)) ⊆ Γ∗ describes the language of
all possible output of T . By Nivat’s theorem [Nivat, 1968], a language family is a full
trio iff it is closed under VVST and inverse homomorphisms. Our considerations also
show that a language family is a full trio iff it is closed under VVST and inverse VVST
mappings.

We say that a word w trace-synchronizes a sequential transducer T if, for all states
p, q ∈ Q, δ(p,w) = δ(q,w), i.e., a synchronizing state is reached, producing identical
output. Notice that from the viewpoint of trace-synchronization, we do not assume that
a VVST has only one state.

Definition 5 (Trace-Sync-Transducer).
Given: Sequential transducer T = (Q,Σ,Γ, δ).
Question: Does there exist a word w ∈ Σ∗ that trace-synchronizes T?

Remarks on sequential transducers. The definitions in the literature are not very clear
for finite automata with outputs. We follow here the name used by Berstel in [Berstel,
1979]; Ginsburg [Ginsburg, 1966] called Berstel’s sequential transducers generalized ma-
chines, but used the term sequential transducer for the nondeterministic counterpart.
For non-deterministic transducers which allow to read multiple letters at once, the con-
cept of fixing the ratio between the length of the produced output and the length of the

18

196 Synchronization of Deterministic Visibly Push-Down Automata

input was already studied in [Carton, 2007] and was even mentioned in [Sakarovitch,
2003]. Here, the ratio is fixed for every transition independent of the input letter(s) and
a transducer admitting such a fixed ratio α is called α-synchronous. The term ’synchro-
nization’ again appears here but refers to finding an α-synchronous transducer to a given
rational relation.

We define Trace-Sync-VST and Trace-Sync-VVST by considering a VST, respec-
tively VVST. In contrast to the undecidability of the problem Trace-Sync-

Transducer [Fernau et al., 2020], we get the following results for trace-synchronizing
VST and VVST from previous results.

Theorem 13. Trace-Sync-VST is PSPACE-complete.

Proof. First, observe that there is a straight reduction from the problem Sync-DVPDA-

Same-NoReturn to Trace-Sync-VST as the input DVPDAs to the problem Sync-

DVPDA-Same-NoReturn have no return letters and, hence, the stack is basically a
write only tape. Further, as the remaining alphabet is partitioned into letters in Σcall,
which write precisely one symbol on the stack, and into letters in Σint, writing nothing on
the stack, the visibly condition is satisfied when interpreting the DVPDA with Σret = ∅
as a VST.

There is also a straight reduction from Trace-Sync-VST to Sync-DVPDA-Same-

NoReturn as follows. For a VST T = (Q,Σ,Γ, δ), we construct a DVPDA M =(Q,Σcall ∪ Σint,Γ′, δ) with Σret = ∅ by introducing for each σ ∈ Σ a new alphabet
Σσ = {w ∈ Γ∗ ∣ ∃q, q′ ∈ Q∶ δ(q, σ) = (q′,w)}. Observe that Σσ is either {ε} or contains only
words of the same length. By setting Σint = {σ ∈ Σ ∣ Σσ = {ε}}, Σcall = {σ ∈ Σ ∣ Σσ ≠ {ε}},
Γ′ = ⋃σ∈Σ(Σσ/{ε}), and interpreting the output sequence w ∈ Γ∗ produced by δ as the
single stack symbol in Γ′.

Yet, by Observation (*), we inherit from Sync-DFA the following algorithmic result.

Theorem 14. Trace-Sync-VVST is in P.

Proof. For each VVST T = (Q,Σ,Γ, δ) and w ∈ Σ∗, the same output is already pro-
duced in δ(q,w) for all q ∈ Q. Hence, we can ignore the output and test T for trace-
synchronization by the polynomial time pair-algorithm for DFAs [Sandberg, 2005].

19

197

7 Discussion

Our results concerning DVPDAs and sub-classes thereof are summarized in Table 1.
While all problems listed in the table are contained in EXPTIME, the table lists sev-
eral problems for which their known complexity status still contains a gap between
PSPACE-hardness lower bounds and EXPTIME upper bounds. Presumably, their pre-
cise complexity status is closely related to upper bounds on the length of synchronizing
words which we want to consider in the near future. One of the questions which could be
solved in this work is if there is a difference between the complexity of synchronization
in the same stack model and synchronization in the arbitrary stack model. While for
general DPDA, DCA, and sub-classes thereof, see [Fernau et al., 2020], these two models
admitted synchronization problems with the same complexity, here we observed that
these models can differ significantly. While the focus of this work is on determining the
complexity status of synchronizability for different models of automata, an obvious ques-
tion for future research is the complexity status of closely related, and well understood
questions in the realm of DFAs, such as the problem of shortest synchronizing word,
subset synchronization, synchronization into a subset, and careful synchronization.

Here is one subtlety that comes with shortest synchronizing words: While for finding
synchronizing words of length at most k for DFAs, it does not matter if the number k
is given in unary or in binary due to the known cubic upper bounds on the lengths of
shortest synchronizing words, this will make a difference in other models where such
polynomial length bounds are unknown. More precisely, for instance with DVPDAs, it
is rather obvious that with a unary length bound k, the problem becomes NP-complete,
while the status is unclear for binary length bounds. As there is no general polynomial
upper bound on the length of shortest synchronizing words for VPDAs, they might be
of exponential length. Hence, we do not get membership in PSPACE easily, not even
for synchronization models concerning DVPDA for which general synchronizability is
solvable in P, as it might be necessary to store the whole word on the stack in order to
test its synchronization effects.

References

[Alur and Madhusudan, 2004] Alur, R. and Madhusudan, P. (2004). Visibly pushdown
languages. In Babai, L., editor, Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 202–211. ACM.

[Alur and Madhusudan, 2009] Alur, R. and Madhusudan, P. (2009). Adding nesting

20

198 Synchronization of Deterministic Visibly Push-Down Automata

structure to words. Journal of the ACM, 56(3):16:1–16:43.

[Arenas et al., 2011] Arenas, M., Barceló, P., and Libkin, L. (2011). Regular languages
of nested words: Fixed points, automata, and synchronization. Theory of Computing
Systems, 49(3):639–670.

[Babari et al., 2016] Babari, P., Quaas, K., and Shirmohammadi, M. (2016). Synchro-
nizing data words for register automata. In Faliszewski, P., Muscholl, A., and Nie-
dermeier, R., editors, 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, volume 58 of
LIPIcs, pages 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Bárány et al., 2006] Bárány, V., Löding, C., and Serre, O. (2006). Regularity problems
for visibly pushdown languages. In Durand, B. and Thomas, W., editors, STACS
2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, volume
3884 of Lecture Notes in Computer Science, pages 420–431. Springer.

[Béal and Perrin, 2016] Béal, M.-P. and Perrin, D. (2016). Synchronised Automata, page
213–240. Encyclopedia of Mathematics and its Applications. Cambridge University
Press.

[Berstel, 1979] Berstel, J. (1979). Transductions and Context-Free Languages, volume 38
of Teubner Studienbücher: Informatik. Teubner.

[Bollig, 2016] Bollig, B. (2016). One-counter automata with counter observability. In
Lal, A., Akshay, S., Saurabh, S., and Sen, S., editors, 36th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2016, Proceedings, volume 65 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

[Carton, 2007] Carton, O. (2007). The growth ratio of synchronous rational relations is
unique. Theoretical Computer Science, 376(1-2):52–59.

[Caucal, 2006] Caucal, D. (2006). Synchronization of pushdown automata. In Ibarra,
O. H. and Dang, Z., editors, Developments in Language Theory, 10th International
Conference, DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings,
volume 4036 of Lecture Notes in Computer Science, pages 120–132. Springer.

[Černý, 1964] Černý, J. (1964). Poznámka k homogénnym eksperimentom s konečnými
automatami. Matematicko-fyzikalny Časopis Slovensk, 14(3):208–215.

[Černý, 2019] Černý, J. (2019). A note on homogeneous experiments with finite au-
tomata. Journal of Automata, Languages and Combinatorics, 24(2-4):123–132.

21

199

[Chistikov et al., 2019] Chistikov, D., Martyugin, P., and Shirmohammadi, M. (2019).
Synchronizing automata over nested words. Journal of Automata, Languages and
Combinatorics, 24(2-4):219–251.

[Doyen et al., 2014] Doyen, L., Juhl, L., Larsen, K. G., Markey, N., and Shirmoham-
madi, M. (2014). Synchronizing words for weighted and timed automata. In Raman,
V. and Suresh, S. P., editors, 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014,
New Delhi, India, volume 29 of LIPIcs, pages 121–132. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik.

[Eppstein, 1990] Eppstein, D. (1990). Reset sequences for monotonic automata. SIAM
Journal on Computing, 19(3):500–510.

[Fernau et al., 2020] Fernau, H., Wolf, P., and Yamakami, T. (2020). Synchronizing
deterministic push-down automata can be really hard. In Esparza, J. and Král’,
D., editors, 45th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of
LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

[Ginsburg, 1966] Ginsburg, S. (1966). The mathematical Theory of Context-Free Lan-
guages. McGraw-Hill.

[Ginsburg and Spanier, 1966] Ginsburg, S. and Spanier, E. H. (1966). Finite-turn push-
down automata. SIAM Journal on Control, 4(3):429–453.

[Hahn et al., 2015] Hahn, M., Krebs, A., Lange, K., and Ludwig, M. (2015). Visibly
counter languages and the structure of NC1. In Italiano, G. F., Pighizzini, G., and
Sannella, D., editors, Mathematical Foundations of Computer Science 2015 - 40th
International Symposium, MFCS 2015, volume 9235 of Lecture Notes in Computer
Science, pages 384–394. Springer.

[Krebs et al., 2015a] Krebs, A., Lange, K., and Ludwig, M. (2015a). On distinguishing
NC1 and NL. In Potapov, I., editor, Developments in Language Theory - 19th Inter-
national Conference, DLT 2015, volume 9168 of Lecture Notes in Computer Science,
pages 340–351. Springer.

[Krebs et al., 2015b] Krebs, A., Lange, K., and Ludwig, M. (2015b). Visibly counter
languages and constant depth circuits. In Mayr, E. W. and Ollinger, N., editors,
32nd International Symposium on Theoretical Aspects of Computer Science, STACS
2015, volume 30 of LIPIcs, pages 594–607. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik.

22

200 Synchronization of Deterministic Visibly Push-Down Automata

[Ludwig, 2019] Ludwig, M. (2019). Tree-Structured Problems and Parallel Computation.
PhD thesis, University of Tübingen, Germany.

[Martyugin, 2014] Martyugin, P. (2014). Computational complexity of certain problems
related to carefully synchronizing words for partial automata and directing words for
nondeterministic automata. Theory of Computing Systems, 54(2):293–304.

[Martyugin, 2012] Martyugin, P. V. (2012). Synchronization of automata with one un-
defined or ambiguous transition. In Moreira, N. and Reis, R., editors, Implementation
and Application of Automata - 17th International Conference, CIAA 2012, Porto,
Portugal, July 17-20, 2012. Proceedings, volume 7381 of Lecture Notes in Computer
Science, pages 278–288. Springer.

[Mehlhorn, 1980] Mehlhorn, K. (1980). Pebbling moutain ranges and its application
of DCFL-recognition. In de Bakker, J. W. and van Leeuwen, J., editors, Automata,
Languages and Programming, 7th Colloquium, Noordweijkerhout, The Netherlands,
July 14-18, 1980, Proceedings, volume 85 of Lecture Notes in Computer Science, pages
422–435. Springer.

[Mikami and Yamakami, 2020] Mikami, E. and Yamakami, T. (2020). Synchronizing
pushdown automata and reset words. An article appeared in Japanese as Technical
Report of The Institute of Electonics, Information and Communication Engineers,
COMP2019-54(2020-03), pp. 57–63.

[Nivat, 1968] Nivat, M. (1968). Transductions des langages de Chomsky. Ann. Inst.
Fourier, Grenoble, 18:339–456.

[Okhotin and Salomaa, 2014] Okhotin, A. and Salomaa, K. (2014). Complexity of input-
driven pushdown automata. SIGACT News, 45(2):47–67.

[Rystsov, 1980] Rystsov, I. K. (1980). On minimizing the length of synchronizing words
for finite automata. In Theory of Designing of Computing Systems, pages 75–82.
Institute of Cybernetics of Ukrainian Acad. Sci. (in Russian).

[Rystsov, 1983] Rystsov, I. K. (1983). Polynomial complete problems in automata the-
ory. Information Processing Letters, 16(3):147–151.

[Sakarovitch, 2003] Sakarovitch, J. (2003). Eléments de Théorie des Automates. Vuibert
informatique.

[Sandberg, 2005] Sandberg, S. (2005). Homing and synchronizing sequences. In Broy,
M., Jonsson, B., Katoen, J., Leucker, M., and Pretschner, A., editors, Model-Based
Testing of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, pages 5–33.
Springer.

23

201

[Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192.

[Shirmohammadi, 2014] Shirmohammadi, M. (2014). Qualitative Analysis of Synchro-
nizing Probabilistic Systems. (Analyse qualitative des systèmes probabilistes synchro-
nisants). PhD thesis, École normale supérieure de Cachan, France.

[Shitov, 2019] Shitov, Y. (2019). An improvement to a recent upper bound for synchro-
nizing words of finite automata. Journal of Automata, Languages and Combinatorics,
24(2-4):367–373.

[Srba, 2009] Srba, J. (2009). Beyond language equivalence on visibly pushdown au-
tomata. Logical Methods in Computer Science, 5(1).

[Starke, 1966] Starke, P. H. (1966). Eine Bemerkung über homogene Experimente. Elek-
tronische Informationsverarbeitung und Kybernetik (Journal of Information Processing
and Cybernetics), 2(4):257–259.

[Starke, 2019] Starke, P. H. (2019). A remark about homogeneous experiments. Journal
of Automata, Languages and Combinatorics, 24(2-4):133–137.

[Szykuła, 2018] Szykuła, M. (2018). Improving the upper bound on the length of the
shortest reset word. In Niedermeier, R. and Vallée, B., editors, 35th Symposium
on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March
3, 2018, Caen, France, volume 96 of LIPIcs, pages 56:1–56:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

[Truthe and Volkov, 2019] Truthe, B. and Volkov, M. V. (2019). Journal of Automata,
Languages and Combinatorics – Essays on the Černý Conjecture. https://www.jalc.
de/issues/2019/issue_24_2-4/content.html. Accessed: 10/1/2020.

[Valiant, 1973] Valiant, L. G. (1973). Decision Procedures for Families of Deterministic
Pushdown Automata. PhD thesis, University of Warwick, Coventry, UK.

[Volkov, 2008] Volkov, M. V. (2008). Synchronizing automata and the černý conjecture.
In Martín-Vide, C., Otto, F., and Fernau, H., editors, Language and Automata Theory
and Applications, Second International Conference, LATA, volume 5196 of LNCS,
pages 11–27. Springer.

24

202 Synchronization of Deterministic Visibly Push-Down Automata

Chapter 11

On the Complexity of Intersection

Non-Emptiness for Star-Free

Language Classes

Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker,

Mateus de Oliveira Oliveira, and Petra Wolf.

An extended abstract appeared in the proceedings of FSTTCS 2021:

Leibniz International Proceedings in Informatics (LIPIcs) 213 (2021) pp. 34:1 – 34:15.

DOI: 10.4230/LIPIcs.FSTTCS.2021.34

This work started at the Schloss Dagstuhl Event 20483 Moderne Aspekte der Kom-

plexitätstheorie in der Automatentheorie which was co-organized by the author of this

thesis, see https://www.dagstuhl.de/20483.

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34
https://www.dagstuhl.de/20483

204 Intersection Non-emptiness for Star-Free Language Classes

On the Complexity of Intersection Non-Emptiness for
Star-Free Language Classes

Emmanuel Arrighi∗1, Henning Fernau†2, Stefan Hoffmann2,
Markus Holzer3, Ismaël Jecker‡4, Mateus de Oliveira Oliveira§1, and

Petra Wolf¶2

1University of Bergen, Norway
2Universität Trier, Germany

3Universität Gießen, Germany
4Institute of Science and Technology, Klosterneuburg, Austria

Abstract

In the Intersection Non-emptiness problem, we are given a list of finite
automata A1, A2, . . . , Am over a common alphabet Σ as input, and the goal is to
determine whether some string w ∈ Σ∗ lies in the intersection of the languages
accepted by the automata in the list. We analyze the complexity of the Inter-

section Non-emptiness problem under the promise that all input automata
accept a language in some level of the dot-depth hierarchy, or some level of the
Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels
of these hierarchies arise naturally in the context of model checking. We identify
a dichotomy in the dot-depth hierarchy by showing that the problem is already
NP-complete when all input automata accept languages of the levels B0 or B1/2

and already PSPACE-hard when all automata accept a language from the level B1.
Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More

∗The author was supported by research Council of Norway (no. 274526), and part of a collaboration
supported by IS-DAAD (no. 309319)
†The author was part of a collaboration supported by DAAD PPP (no. 57525246)
‡The author was supported by Marie Skłodowska-Curie Grant Agreement no. 754411
§The author was supported by research Council of Norway (no. 288761) and part of a collaboration

supported by IS-DAAD (no. 309319)
¶The author was supported by DFG-funded project FE560/9-1 and part of a collaboration supported

by DAAD PPP (no. 57525246)

1

205

precisely, we show that the problem is in AC0 when restricted to level L0; complete
for L or NL, depending on the input representation, when restricted to languages in
the level L1/2; NP-complete when the input is given as DFAs accepting a language
in L1 or L3/2; and finally, PSPACE-complete when the input automata accept lan-
guages in level L2 or higher. Moreover, we show that the proof technique used
to show containment in NP for DFAs accepting languages in L1 or L3/2 does not
generalize to the context of NFAs. To prove this, we identify a family of languages
that provide an exponential separation between the state complexity of general
NFAs and that of partially ordered NFAs. To the best of our knowledge, this is
the first superpolynomial separation between these two models of computation.

1 Introduction

The Intersection Non-emptiness problem for finite automata is one of the most
fundamental and well studied problems in the interplay between algorithms, complexity
theory, and automata theory [Kozen, 1977,Kasai and Iwata, 1985,Lange and Rossmanith,
1992, Wareham, 2000, Karakostas et al., 2003, Wehar, 2014, Fernau and Krebs, 2017,
Wehar, 2016]. Given a list A1, A2, . . . , Am of finite automata over a common alphabet Σ,
the goal is to determine whether there is a string w ∈ Σ∗ that is accepted by each
of the automata in the list. This problem is PSPACE-complete when no restrictions are
imposed [Kozen, 1977], and becomes NP-complete when the input automata accept unary
languages (implicitly contained already in [Stockmeyer and Meyer, 1973] and studied in
detail in [Morawietz et al., 2020]) or finite languages [Rampersad and Shallit, 2010].

In this work, we analyze the complexity of the Intersection Non-emptiness prob-
lem under the assumption that the languages accepted by the input automata belong
to a given level of the Straubing-Thérien hierarchy [Place and Zeitoun, 2019, Straub-
ing, 1981, Straubing, 1985, Thérien, 1981] or to some level of the Cohen-Brzozowski
dot-depth hierarchy [Brzozowski, 1976,Cohen and Brzozowski, 1971,Place and Zeitoun,
2019]. Somehow, these languages are severely restricted, in the sense that both hier-
archies, which are infinite, are entirely contained in the class of star-free languages, a
class of languages that can be represented by expressions that use union, concatena-
tion, and complementation, but no Kleene star operation [Brzozowski, 1976,Brzozowski
and Knast, 1978, Place and Zeitoun, 2019]. Yet, languages belonging to fixed levels
of either hierarchy may already be very difficult to characterize, in the sense that the
very problem of deciding whether the language accepted by a given finite automaton
belongs to a given full level or half-level k of either hierarchy is open, except for a few
values of k [Almeida and Klíma, 2010,Glaßer and Schmitz, 2001,Glaßer and Schmitz,

2

206 Intersection Non-emptiness for Star-Free Language Classes

2000,Place and Zeitoun, 2019]. It is worth noting that while the problem of determining
whether a given automaton accepts a language in a certain level of either the dot-depth
or of the Straubing-Thérien hierarchy is computationally hard (Theorem 1), automata
accepting languages in lower levels of these hierarchies arise naturally in a variety of ap-
plications such as model checking where the Intersection Non-emptiness problem
is of fundamental relevance [Abdulla, 2012,Bouajjani et al., 2000,Bouajjani et al., 2007].

An interesting question to consider is how the complexity of the Intersection Non-

emptiness problem changes as we move up in the levels of the Straubing-Thérien hier-
archy or in the levels of the dot-depth hierarchy. In particular, does the complexity of
this problem changes gradually, as we increase the complexity of the input languages? In
this work, we show that this is actually not the case, and that the complexity landscape
for the Intersection Non-emptiness problem is already determined by the very first
levels of either hierarchy (see Figure 1). Our first main result states that the Inter-

section Non-emptiness problem for NFAs and DFAs accepting languages from the
level 1/2 of the Straubing-Thérien hierarchy are NL-complete and L-complete, respec-
tively, under AC0 reductions (Theorem 3). Additionally, this completeness result holds
even in the case of unary languages. To prove hardness for NL and L, respectively, we will
use a simple reduction from the reachability problem for DAGs and for directed trees,
respectively. Nevertheless, the proof of containment in NL and in L, respectively, will
require a new insight that may be of independent interest. More precisely, we will use a
characterization of languages in the level 1/2 of the Straubing-Thérien hierarchy as shuf-
fle ideals to show that the Intersection Non-emptiness problem can be reduced to
concatenation non-emptiness (Lemma 2). This allows us to decide Intersection

Non-emptiness by analyzing each finite automaton given at the input individually. It
is worth mentioning that this result is optimal in the sense that the problem becomes
NP-hard even if we allow a single DFA to accept a language from L1, and require all the
others to accept languages from L1/2 (Theorem 5).

Subsequently, we analyze the complexity of Intersection Non-emptiness when all
input automata are assumed to accept languages from one of the levels of B0 or B1/2

of the dot-depth hierarchy, or from the levels L1 or L3/2 of the Straubing-Thérien hi-
erarchy. It is worth noting that NP-hardness follows straightforwardly from the fact
that Intersection Non-emptiness for DFAs accepting finite languages is already
NP-hard [Rampersad and Shallit, 2010]. Containment in NP, on the other hand, is a
more delicate issue, and here the representation of the input automaton plays an im-
portant role. A characterization of languages in L3/2 in terms of languages accepted
by partially ordered NFAs [Schwentick et al., 2001] is crucial for us, combined with the
fact that Intersection Non-emptiness when the input is given by such automata
is NP-complete [Masopust and Thomazo, 2015]. Intuitively, the proof in [Masopust and

3

207

Thomazo, 2015] follows by showing that the minimum length of a word in the intersection
of languages in the level 3/2 of the Straubing-Thérien hierarchy is bounded by a polyno-
mial on the sizes of the minimum partially ordered NFAs accepting these languages. To
prove that Intersection Non-emptiness is in NP when the input automata are given
as DFAs, we prove a new result establishing that the number of Myhill-Nerode equiva-
lence classes in a language in the level L3/2 is at least as large as the number of states
in a minimum partially ordered automaton representing the same language (Lemma 5).

Interestingly, we show that the proof technique used to prove this last result does not
generalize to the context of NFAs. To prove this, we carefully design a sequence (Ln)n∈N≥1

of languages over a binary alphabet such that for every n ∈ N≥1, the language Ln can
be accepted by an NFA of size n, but any partially ordered NFA accepting Ln has
size 2Ω(

√
n). This lower bound is ensured by the fact that the syntactic monoid of Ln has

many J -factors. Our construction is inspired by a technique introduced by Klein and
Zimmermann, in a completely different context, to prove lower bounds on the amount of
look-ahead necessary to win infinite games with delay [Klein and Zimmermann, 2016].
To the best of our knowledge, this is the first exponential separation between the state
complexity of general NFAs and that of partially ordered NFAs. While this result does
not exclude the possibility that Intersection Non-emptiness for languages in L3/2

represented by general NFAs is in NP, it gives some indication that proving such a
containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is
already PSPACE-complete if all accepting languages are from the level B1 of the dot-depth
hierarchy or from the level L2 of the Straubing-Thérien hierarchy. We can adapt Kozen’s
classical PSPACE-completeness proof by using the complement of languages introduced
in [Masopust and Krötzsch, 2021] in the study of partially ordered automata. Since the
languages in [Masopust and Krötzsch, 2021] belong to L3/2, their complement belong
to L2 (and to B1), and therefore, the proof follows.

Acknowledgment We like to thank Lukas Fleischer and Michael Wehar for our dis-
cussions. This work started at the Schloss Dagstuhl Event 20483 Moderne Aspekte der
Komplexitätstheorie in der Automatentheorie https://www.dagstuhl.de/20483.

2 Preliminaries

We let N≥k denote the set of natural numbers greater or equal than k.

4

208 Intersection Non-emptiness for Star-Free Language Classes

We assume the reader to be familiar with the basics in computational complexity the-
ory [Papadimitriou, 1994]. In particular, we recall the inclusion chain: AC0 ⊂ NC1 ⊆
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE. Let AC0 (NC1, respectively) refer to the class of prob-
lems accepted by Turing machines with a bounded (unbounded, respectively) number
of alternations in logarithmic time; alternatively one can define these classes by uni-
form Boolean circuits. Here, L (NL, respectively) refers to the class of problems that
are accepted by deterministic (non-deterministic, respectively) Turing machines with
logarithmic space, P (NP, respectively) denotes the class of problems solvable by de-
terministic (non-deterministic, respectively) Turing machines in polynomial time, and
PSPACE refers to the class of languages accepted by deterministic or non-deterministic
Turing machines in polynomial space [Savitch, 1970]. Completeness and hardness are al-
ways meant with respect to deterministic logspace many-one reductions unless otherwise
stated. We will also consider the parameterized class XP of problems that can be solved
in time nf(k), where n is the size of the input, k is a parameter, and f is a computable
function [Flum and Grohe, 2006].

We mostly consider non-deterministic finite automata (NFAs). An NFA A is a tuple
A = (Q,Σ, δ, q0, F), where Q is the finite state set with the start state q0 ∈ Q, the
alphabet Σ is a finite set of input symbols, and F ⊆ Q is the final state set. The
transition function δ : Q×Σ→ 2Q extends to words from Σ∗ as usual. Here, 2Q denotes
the powerset of Q. By L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, we denote the language
accepted by A. The NFA A is a deterministic finite automaton (DFA) if |δ(q, a)| = 1 for
every q ∈ Q and a ∈ Σ. Then, we simply write δ(q, a) = p instead of δ(q, a) = {p}. If
|Σ| = 1, we call A a unary automaton.

We study Intersection Non-emptiness problems and their complexity. For finite
automata, this problem is defined as follows:

• Input : Finite automata Ai = (Qi,Σ, δi, q(0,i), Fi), for 1 ≤ i ≤ m.

• Question: Is there a word w that is accepted by all Ai, i.e., is
⋂m
i=1 L(Ai) 6= ∅?

Observe that the automata have a common input alphabet. Note that the complexity
of the non-emptiness problem for finite automata of a certain type is a lower bound for
the Intersection Non-emptiness for this particular type of automata. Through-
out the paper we are mostly interested in the complexity of the Intersection Non-

emptiness problem for finite state devices whose languages are contained in a particular
language class.

We study the computational complexity of the intersection non-emptiness problem for
languages from the classes of the Straubing-Thérien [Straubing, 1981,Thérien, 1981] and

5

209

NL

NP
PSPACE

L0 L 1
2

B0

L1

B 1
2

L 3
2

B1

L2

Figure 1: Straubing-Thérien and dot-depth hierarchies: the Intersection Non-
emptiness status.

Cohen-Brzozowski’s dot-depth hierarchy [Cohen and Brzozowski, 1971]. Both hierarchies
are concatenation hierarchies that are defined by alternating the use of polynomial and
Boolean closures. Let’s be more specific. Let Σ be a finite alphabet. A language L ⊆ Σ∗ is
a marked product of the languages L0, L1, . . . , Lk, if L = L0a1L1 · · · akLk, where the ai’s
are letters. For a class of languages M, the polynomial closure of M is the set of
languages that are finite unions of marked product of languages fromM.

The concatenation hierarchy of basisM (a class of languages) is defined as follows (also
refer to [Pin, 1998]): Level 0 isM, i.e.,M0 =M and, for each n ≥ 0,

1. Mn+1/2, that is, level n+ 1/2, is the polynomial closure of level n and

2. Mn+1, that is, level n+ 1, is the Boolean closure of level n+ 1/2.

The basis of the dot-depth hierarchy is the class of all finite and co-finite languages1 and
their classes are referred to as Bn (Bn+1/2, respectively), while the basis of the Straubing-
Thérien hierarchy is the class of languages that contains only the empty set and Σ∗ and
their classes are denoted by Ln (Ln+1/2, respectively). Their inclusion relation is given
by

Bn+1/2 ⊆ Bn+1 ⊆ Bn+3/2 and Ln+1/2 ⊆ Ln+1 ⊆ Ln+3/2,

for n ≥ 0, and

Ln−1/2 ⊆ Bn−1/2 ⊆ Ln+1/2 and Ln ⊆ Bn ⊆ Ln+1,

for n ≥ 1. In particular, L0 ⊆ B0, B0 ⊆ B1/2, and L0 ⊆ L1/2. Both hierarchies are
infinite for alphabets of at least two letters and completely exhaust the class of star-free
languages, which can be described by expressions that use union, concatenation, and
complementation, but no Kleene star operation. For singleton letter alphabets, both
hierarchies collapse to B0 and L1, respectively. Next, we describe the first few levels of
each of these hierarchies:

1The dot-depth hierarchy, apart from level B0, coincides with the concatenation hierarchy starting
with the language class {∅, {λ},Σ+,Σ∗}.

6

210 Intersection Non-emptiness for Star-Free Language Classes

Straubing-Thérien hierarchy: A language of Σ∗ is of level 0 if and only if it is empty
or equal to Σ∗. The languages of level 1/2 are exactly those languages that are
a finite (possibly empty) union of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where
the ai’s are letters from Σ. The languages of level 1 are finite Boolean combina-
tions of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are letters. These
languages are also called piecewise testable languages. In particular, all finite and
co-finite languages are of level 1. Finally, the languages of level 3/2 of Σ∗ are the
finite unions of languages of the form Σ∗0a1Σ∗1a2 · · · akΣ∗k, where the ai’s are letters
from Σ and the Σi are subsets of Σ.

Dot-depth hierarchy: A language of Σ∗ is of dot-depth (level) 0 if and only if it is
finite or co-finite. The languages of dot-depth 1/2 are exactly those languages that
are a finite union of languages of the form u0Σ∗u1Σ∗u2 · · ·uk−1Σ∗uk, where k ≥ 0

and the ui’s are words from Σ∗. The languages of dot-depth 1 are finite Boolean
combinations of languages of the form u0Σ∗u1Σ∗u2 · · ·uk−1Σ∗uk, where k ≥ 0 and
the ui’s are words from Σ∗.

It is worth mentioning that in [Schwentick et al., 2001] it was shown that partially
ordered NFAs (with multiple initial states) characterize the class L3/2, while partially
ordered DFAs characterize the class ofR-trivial languages [Brzozowski and Fich, 1980], a
class that is strictly in between L1 and L3/2. For an automaton A with input alphabet Σ,
a state q is reachable from a state p, written p ≤ q, if there is a word w ∈ Σ∗ such that
q ∈ δ(p, w). An automaton is partially ordered if ≤ is a partial order. Partially ordered
automata are sometimes also called acyclic or weakly acyclic automata. We refer to a
partially ordered NFA (DFA, respectively) as poNFA (poDFA, respectively).

The fact that some of our results have a promise looks a bit technical, but the following
result implies that we cannot get rid of this condition in general. To this end, we study,
for a language class L, the following question of L-Membership.

• Input : A finite automaton A.

• Question: Is L(A) ∈ L?

Theorem 1. For each level L of the Straubing-Thérien or the dot-depth hierarchies,
the L-Membership problem for NFAs is PSPACE-hard, even when restricted to binary
alphabets.

Proof. For the PSPACE-hardness, note that each of the classes contains {0, 1}∗ and is
closed under quotients, since each class is a positive variety. As Non-universality

7

211

is PSPACE-hard for NFAs, we can apply Theorem 3.1.1 of [Hunt III and Rosenkrantz,
1978], first reducing regular expressions to NFAs.

For some of the lower levels of the hierarchies, we also have containment in PSPACE, but
in general, this is unknown, as it connects to the famous open problem if, for instance,
L-Membership is decidable for L = L3; see [Masopust, 2018,Place and Zeitoun, 2019]
for an overview on the decidability status of these questions. Checking for L0 up to L2

and B0 up to B1 containment for DFAs can be done in NL and is also complete for this
class by ideas similar to the ones used in [Cho and Huynh, 1991].

3 Inside Logspace

A language of Σ∗ belongs to level 0 of the Straubing-Thérien hierarchy if and only if it
is empty or Σ∗. The Intersection Non-emptiness problem for language from this
language family is not entirely trivial, because we have to check for emptiness. Since
by our problem definition the property of a language being a member of level 0 is a
promise, we can do the emptiness check within AC0, since we only have to verify whether
the empty word belongs to the language L specified by the automaton. In case ε ∈ L,
then L = Σ∗; otherwise L = ∅. Since in the definition of finite state devices we do not
allow for ε-transitions, we thus only have to check whether the initial state is also an
accepting one. Therefore, we obtain:

Theorem 2. The Intersection Non-emptiness problem for DFAs or NFAs accept-
ing languages from L0 belongs to AC0.

For the languages of level L1/2 we find the following completeness result.

Theorem 3. The Intersection Non-emptiness problem for NFAs accepting lan-
guages from L1/2 is NL-complete. Moreover, the problem remains NL-hard even if we
restrict the input to NFAs over a unary alphabet. If the input instance contains only
DFAs, the problem becomes L-complete (under weak reductions2).

Hardness is shown by standard reductions from variants of graph accessibility [Hartmanis
et al., 1978,Sudborough, 1975].

Lemma 1. The Intersection Non-emptiness problem for NFAs over unary alphabet
accepting languages from L1/2 is NL-hard. If the input instance contains only DFAs, the
problem becomes L-hard under weak reductions.

2Some form of AC0 reducibility can be employed.

8

212 Intersection Non-emptiness for Star-Free Language Classes

Proof. The NL-complete graph accessibility problem 2-GAP [Sudborough, 1975] is de-
fined as follows: given a directed graph G = (V,E) with outdegree (at most) two and two
vertices s and t. Is there a path linking s and t in G? The problem remains NL-complete
if the outdegree of every vertex of G is exactly two and if the graph is ordered, that is,
if (i, j) ∈ E, then i < j must be satisfied. The complexity of the reachability problem
drops to L-completeness, if one considers the restriction that the outdegree is at most
one. In this case the problem is referred to as 1-GAP [Hartmanis et al., 1978].

First we consider the Intersection Non-emptiness problem for NFAs. The NL-
hardness is seen as follows: let G = (V,E) and s, t ∈ V be an ordered 2-GAP instance.
Without loss of generality, we assume that V = {1, 2, . . . , n}, the source vertex s = 1,
and the target vertex t = n. From G we construct a unary NFA A = (V, {a}, δ, 1, n),
where δ(i, a) = { j | (i, j) ∈ E } ∪ {i}. The 2-GAP instance has a solution if and only
if the language accepted by A is non-empty. Moreover, by construction the automaton
accepts a language of level 1/2, because (i) the NFA without a-self-loops is acyclic,
since G is ordered, and thus does not contain any large cycles and (ii) all states do have
self-loops.

Finally, we concentrate on the L-hardness of the Intersection Non-emptiness prob-
lem for DFAs. Here we use the 1-GAP variant to prove our result. Let G = (V,E)

and s, t ∈ V be a 1-GAP instance, where we can assume that V = {1, 2, . . . , n}, s = 1,
and t = n. From G we construct a unary DFA A = (V, {a}, δ, 1, n) with δ(i, a) = j,
for (i, j) ∈ E and 1 ≤ i < n, and δ(n, a) = n. By construction the DFA A accepts
either the empty language or a unary language where all words are at least of a certain
length. In both cases L(A) is a language from level 1/2 of the Straubing-Thérien hier-
archy. Moreover, it is easy to see that there is a path in G linking s and t if and only if
L(A) 6= ∅.

It remains to show containment in logspace. To this end, we utilize an alternative charac-
terization of the languages of level 1/2 of the Straubing-Thérien hierarchy as exactly those
languages that are shuffle ideals. A language L is a shuffle ideal if, for every word w ∈ L
and v ∈ Σ∗, the set w � v is contained in L, where w � v := {w0v0w1v1 . . . wkvk |
w = w0w1 . . . wk and v = v0v1 . . . vk with wi, vi ∈ Σ∗, for 0 ≤ i ≤ k }. The operation �
naturally generalizes to sets. For the level L1/2, we find the following situation.

Lemma 2. Let m ≥ 1 and languages Li ⊆ Σ∗, for 1 ≤ i ≤ m, be shuffle ideals, i.e.,
they belong to L1/2. Then,

⋂m
i=1 Li 6= ∅ iff the shuffle ideal L1L2 · · ·Lm 6= ∅ iff Li 6= ∅

for every i with 1 ≤ i ≤ m. Finally, Li 6= ∅, for 1 ≤ i ≤ m, iff (a1a2 . . . ak)
`i ∈ Li, where

Σ = {a1, a2, . . . ak} and the shortest word in Li is of length `i.

9

213

Proof. The implication from left to right holds, because if
⋂m
i=1 Li 6= ∅, then there is a

word w that belongs to all Li, and hence the concatenation L1L2 · · ·Lm is nonempty,
too. Since this argument has not used the prerequisite that the Li’s belong to the first
half level of the Straubing-Thérien hierarchy, this implication does hold in general.

For the converse implication, recall that a language L of the first half level is a finite
(possibly empty) union of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are
letters. Hence, whenever a word w belongs to L, any word of the form uwv with u, v ∈ Σ∗

is a member of L, too. Now assume that L1L2 · · ·Lm 6= ∅, which can be witnessed by
words wi ∈ Li, for 1 ≤ i ≤ m. But then the word w1w2 . . . wm belongs to every Li,
by setting u = w1w2 . . . wi−1 and v = wi+1wi+2 . . . wm and using the argument above.
Therefore, the intersection of all Li, i.e., the set

⋂m
i=1 Li, is nonempty, because of the

word w1w2 . . . wm.

The statement that L1L2 · · ·Lm is an ideal and that L1L2 · · ·Lm 6= ∅ if and only if Li 6= ∅,
for every i with 1 ≤ i ≤ m, is obvious.

For the last statement, assume Σ = {a1, a2 . . . , ak}. The implication from right to left
is immediate, because if (a1a2 . . . ak)

`i ∈ Li, for `i as specified above, then Li is non-
empty. Conversely, if Li is non-empty, then there is a shortest word w of length `i that
is contained in Li. But then (a1a2 . . . ak)

`i belongs to w�Σ∗, which by assumption is a
subset of the language Li, since Li is an ideal. Therefore, Li 6= ∅ implies (a1a2 . . . ak)

`i ∈
Li, which proves the stated claim.

Now, we are ready to prove containment in logspace and thereby conclude the proof of
Theorem 3.

Lemma 3. The Intersection Non-emptiness problem for NFAs accepting languages
from L1/2 belongs to NL. If the input instance contains only DFAs, the problem is in L.

Proof. In order to solve the Intersection Non-emptiness problem for given finite
automata A1, A2, . . . , Am with a common input alphabet Σ, regardless of whether they
are deterministic or non-deterministic, it suffices to check non-emptiness for all lan-
guages L(Ai), for 1 ≤ i ≤ m, in sequence, because of Lemma 2. To this end, mem-
bership of the words (a1a2 . . . ak)

`i in Li has to be tested, where `i is the length of the
shortest word in Li. Obviously, all `i are linearly bounded in the number of states of the
appropriate finite automaton that accepts Li. Hence, for NFAs as input instance, the
test can be done on a non-deterministic logspace-bounded Turing machine, guessing the
computations in the individual NFAs on the input word (a1a2 . . . ak)

`i . For DFAs as in-
put instance, non-determinism is not needed, so that the procedure can be implemented
on a deterministic Turing machine.

10

214 Intersection Non-emptiness for Star-Free Language Classes

4 NP-Completeness

In contrast to the Straubing-Thérien hierarchy, the Intersection Non-emptiness

problem for languages from the dot-depth hierarchy is already NP-hard in the lowest
level B0. More precisely, Intersection Non-emptiness for finite languages is NP-
hard [Rampersad and Shallit, 2010, Theorem 1] and B0 already contains all finite lan-
guages. Hence, the Intersection Non-emptiness problem for languages from the
Straubing-Thérien hierarchy of level L1 and above is NP-hard, too. For the levels B0,
B1/2, L1, or L3/2, we give matching complexity upper bounds if the input are DFAs,
yielding the first main result of this section proven in subsection 4.1.

Theorem 4. The Intersection Non-emptiness problem for DFAs accepting lan-
guages from either B0, B1/2, L1, or L3/2 is NP-complete. The same holds for poNFAs
instead of DFAs. The results hold even for a binary alphabet.

For the level L1 of the Straubing-Thérien hierarchy, we obtain with the next main the-
orem a stronger result. Recall that if all input DFAs accept languages from L1/2, the
Intersection Non-emptiness problem is L-complete due to Lemmata 1 and 3.

Theorem 5. The Intersection Non-emptiness problem for DFAs is NP-complete
even if only one DFA accepts a language from L1 and all other DFAs accept languages
from L1/2 and the alphabet is binary.

The proof of this theorem will be given in subsection 4.2.

For the level B0, we obtain a complete picture of the complexity of the Intersection

Non-emptiness problem, independent of structural properties of the input finite au-
tomata, i.e., we show that here the problem is NP-complete for general NFAs.

For the level L3/2, if the input NFA are from the class of poNFA, which character-
ize level L3/2, then the Intersection Non-emptiness problem is known to be NP-
complete [Masopust and Krötzsch, 2021]. Recall that L3/2 contains the levels B1/2,
and L1 and hence also languages from these classes can be represented by poNFAs. But
if the input automata are given as NFAs without any structural property, then the pre-
cise complexity of Intersection Non-emptiness for B1/2, L1, and L3/2 is an open
problem and narrowed by NP-hardness and membership in PSPACE. We present a “No-
Go-Theorem” by proving that for an NFA accepting a co-finite language, the smallest
equivalent poNFA is exponentially larger in Subsection 4.3.

Theorem 6. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing
Ln has more than 2n−1 states.

11

215

While for NFAs the precise complexity for Intersection Non-emptiness of languages
from L1 remains open, we can tackle this gap by narrowing the considered language class
to commutative languages in level L1; recall that a language L ⊆ Σ∗ is commutative if,
for any a, b ∈ Σ and words u, v ∈ Σ∗, we have that uabv ∈ L implies ubav ∈ L. We show
that for DFAs, this restricted Intersection Non-emptiness problem remains NP-
hard, in case the alphabet is unbounded. Concerning membership in NP, we show that
even for NFAs, the Intersection Non-emptiness problem for commutative languages
is contained in NP in general and in particular for commutative languages on each level.
This generalizes the case of unary NFAs. Note that for commutative languages, the
Straubing-Thérien hierarchy collapses at level L3/2. See Subsection 4.4 for the proofs.

Theorem 7. The Intersection Non-emptiness problem

• is NP-hard for DFAs accepting commutative languages in L1, but

• is contained in NP for NFAs accepting commutative languages that might not be
star-free.

The proof of NP-hardness for commutative star-free languages in L1 requires an arbitrary
alphabet. However, we show that Intersection Non-emptiness is contained in XP,
with the size of the alphabet as the parameter, for specific forms of NFAs accepting
commutative star-free languages, i.e., for fixed input alphabets, the Intersection Non-

emptiness problem is solvable in polynomial time for this class of NFAs.

4.1 NP-Membership

Next, we focus on the NP-membership part of Theorem 4 and begin by proving that
for B0, regardless of whether the input automata are NFAs or DFAs, the Intersection

Non-emptiness problem is contained in NP and therefore NP-complete in combination
with [Rampersad and Shallit, 2010].

Lemma 4. The Intersection Non-emptiness problem for DFAs or NFAs all ac-
cepting languages from B0 is contained in NP.

Proof. Let A1, A2, . . . , Am be NFAs accepting languages from B0. If all NFAs accept
co-finite languages, the intersection

⋂m
i=1 L(Ai) is non-empty. We can check determin-

istically if an NFA Ai, accepting a language from B0, is co-finite in polynomial time by
using the promise of the language class, stating that L(Ai) is either finite or co-finite.
For that, we check whether Ai contains a cycle on an accepting path from the initial to
some final state. If this is the case, we know that L(Ai) is co-finite as it is not finite.

12

216 Intersection Non-emptiness for Star-Free Language Classes

Otherwise, there is at least one NFA accepting a finite language, where the longest word
is bounded by the number of states of this device. Hence, if

⋂m
i=1 L(Ai) 6= ∅, there is a

word w of length polynomial in the length of the input that witnesses this fact. Such
a w can be non-deterministically guessed by a Turing machine checking membership of w
in L(Ai), for all NFAs Ai, in sequence. This shows containment in NP as desired.

Notice that Masopust and Krötzsch have shown in [Masopust and Krötzsch, 2021] that
Intersection Non-emptiness for poDFAs and for poNFAs is NP-complete. Also the
unary case is discussed there, which can be solved in polynomial time. We cannot directly
make use of these results, as we consider arbitrary NFAs or DFAs as inputs, only with
the promise that they accept languages from a certain level of the studied hierarchies.
In order to prove that for the levels B0, B1/2, L1, and L3/2, the Intersection Non-

emptiness problem for DFAs is contained in NP, it is sufficient to prove the claim
for L3/2 as all other stated levels are contained in L3/2. We prove the latter statement by
obtaining a bound, polynomial in the size of the largest DFA, on the length of a shortest
word accepted by all DFAs. Therefore, we show that for a minimal poNFA A, the size of
an equivalent DFA is lower-bounded by the size of A and use a result of [Masopust and
Krötzsch, 2021] for poNFAs. They have shown that given poNFAs A1, A2, . . . , Am, if the
intersection of these automata is non-empty, then there exists a word of size at most∑

i∈{1,...,m} di, where di is the depth of Ai [Masopust and Krötzsch, 2021, Theorem 3.3].
Here, the depth of Ai is the length of the longest path (without self-loops) in the state
graph of Ai. This result implies that the Intersection Non-emptiness problem for
poNFAs accepting languages from L3/2 is contained in NP. We will further use this result
to show that the Intersection Non-emptiness problem for DFAs accepting languages
from L3/2 is NP-complete. First, we show that the number of states in a minimal poNFA
is at most the number of classes in the Myhill-Nerode equivalence relation.

Lemma 5. Let A = (Q,Σ, δ, q0, F) be a minimal poNFA. Then, L(q1A) 6= L(q2A) for
all states q1, q2 ∈ Q, where qA is defined as (Q,Σ, δ, q, F).

Proof. Let A = (Q,Σ, δ, q0, F) be a minimal poNFA and q1, q2 ∈ Q be two states.
Suppose that L(q1A) = L(q2A). We have two cases.

1. If q1 and q2 are pairwise not reachable from each other, then letA′ = (Q′,Σ, δ′, q0, F
′)

be the NFA obtained from A, where q1 and q2 are merged into a new state q1,2,
so that Q′ = (Q \ {q1, q2}) ∪ {q1,2}, δ′(q1,2, a) = δ(q1, a) ∪ δ(q2, a), for all q ∈ Q′,
q1,2 ∈ δ′(q, a) if and only if q1 ∈ δ(q, a) or q2 ∈ δ(q, a), and q1,2 ∈ F ′ if and only if
q1 ∈ F or q2 ∈ F . Automata A′ is a partially ordered NFA. As q1 and q2 are not
reachable one from the other, they are incomparable in the partial order relation

13

217

defined by A. Therefore, there is no state q such that q1 < q and q < q2. One can
check that L(A′) = L(A), which contradicts the minimality of A.

2. Otherwise, q1 is reachable from q2, or q2 is reachable from q1. Without loss of
generality, we assume that q2 is reachable from q1. Let A′ = (Q′,Σ, δ′, q0, F

′) be
the NFA obtained from A in two steps as described next. First, we remove all
outgoing transitions from q1 and then we merge q1 and q2 into a new state q1,2 as
done before. After removing all outgoing transitions from q1, state q2 is no longer
reachable from q1, therefore, as before, A′ is a partially ordered NFA. Now we will
prove that L(A) = L(A′).

• Let w ∈ L(A). Let ρ be an accepting run in A. If ρ does not contain q1, then
the run obtained by replacing every q2 by q1,2 is an accepting run in A′. If ρ
contains q1, then we split w into w1 and w2 such that w = w1w2 and w1 is
the shortest prefix of w such that, after reading w1, we reach q1 in ρ. Because
we merged q1 and q2 into q1,2, we have that q1,2 ∈ δ′(q0, w1) in A′. Because
L(q1A) = L(q2A), we have that L(q1A) = L(q2A) = L(q1,2A

′) and therefore
δ′(q1,2, w2) ∩ F ′ 6= ∅. So, w is accepted by A′.

• Conversely, let w ∈ L(A′). Let ρ be an accepting run in A′. If ρ does not
contain q1,2, then the same run is accepting in A, too. If ρ contains q1,2, we
split w into w1 and w2 such that w = w1w2, where w1 is the shortest prefix
of w such that, after reading w1, we reach q1,2 in ρ. Then, by definition of
q1,2, δ(q0, w1) ∩ {q1, q2} 6= ∅, and δ(q1, w2) ∩ F 6= ∅ iff δ(q2, w2) ∩ F 6= ∅ iff
δ′(q1,2, w2) 6= ∅. Therefore, w ∈ L(A).

This contradicts the minimality of A.

Now, we can use the result from Masopust and Krötzsch to prove that the Intersection

Non-emptiness problem for DFAs accepting languages in L3/2 is in NP.

Lemma 6. The Intersection Non-emptiness problem for DFAs accepting languages
from L3/2 belongs to NP.

Proof. By Lemma 5, we have that the number of states in a minimal poNFA is at
most the number of classes of the Myhill-Nerode equivalence relation. Hence, given
a DFA accepting a language L ∈ L3/2, there exists a potentially smaller poNFA that
recognizes L. By [Masopust and Krötzsch, 2021, Theorem 3.3], if the intersection is not
empty, then there is a certificate of size polynomial in the sizes of the poNFAs .

14

218 Intersection Non-emptiness for Star-Free Language Classes

0 i1 i1+1 i1+2 i2 i2+1 i2+2 n n+1

i1+1 i1+2 i2+1 i2+2 n

Σ 0

1

Σ Σ 0

1

Σ Σ Σ Σ

Σ Σ Σ Σ Σ

Figure 2: DFA Aei with L(Aei) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1. A dotted
arrow between some states j and j′ represents a chain of length j′ − j with the same
transition labels.

4.2 NP-Hardness

Recall that Intersection Non-emptiness for finite languages accepted by DFAs is
already NP-complete by [Rampersad and Shallit, 2010, Theorem 1]. As the level B0 of
the dot-depth hierarchy contains all finite language, the NP-hardness part of Theorem 4
follows directly from inclusion of language classes. Combining Lemma 6, and [Masopust
and Krötzsch, 2021, Theorem 3.3] with the inclusion between levels in the Straubing-
Thérien and the dot-depth hierarchy, we conclude the proof of Theorem 4.

Remark 1. Recall that the dot-depth hierarchy, apart form B0, coincides with the con-
catenation hierarchy starting with the language class {∅, {λ},Σ+,Σ∗}. The Inter-

section Non-emptiness problem for DFAs or NFAs accepting only languages from
{∅, {λ},Σ+,Σ∗} belongs to AC0, by similar arguments as in the proof of Theorem 2.

We showed in Section 3 that Intersection Non-emptiness for DFAs, all accepting
languages from L1/2, belongs to L. If we allow only one DFA to accept a language from L1,
the problem becomes NP-hard. The statement also holds if the common alphabet is
binary.

Theorem 5. The Intersection Non-emptiness problem for DFAs is NP-complete
even if only one DFA accepts a language from L1 and all other DFAs accept languages
from L1/2 and the alphabet is binary.

Proof sketch. The reduction is from Vertex Cover. Let k ∈ N≥0 and let G = (V,E)

be a graph with vertex set V = {v0, v1, . . . , vn−1} and edge set E = {e0, e1, . . . , em−1}.
The only words w = a0a1 . . . a` accepted by all DFAs will be of length exactly n = `+ 1

and encode a vertex cover by: vj is in the vertex cover if and only if aj = 1. Therefore,
we construct for each edge ei = {vi1 , vi2} ∈ E, with i1 < i2, a DFA Aei , as depicted in
Figure 2, that accepts the language L(Aei) = Σi1 · 1 ·Σn−i1−1 ∪Σi2 · 1 ·Σn−i2−1 ∪Σ≥n+1.
We show that L(Aei) is from L1/2, as it also accepts all words of length at least n+1. We
further construct a DFA A=n,≤k that accepts all words of length exactly n that contain
at most k letters 1. The finite language L(A=n,≤k) is the only language from L1 in the
instance.

15

219

Proof. The NP-membership follows from Lemma 6 by inclusion of language classes. For
the hardness, we give a reduction from the Vertex Cover problem: given an undirected
graph G = (V,E) with vertex set V and edge set E ⊆ V × V and integer k. Is there a
subset S ⊆ V with |S| ≤ k and for all e ∈ E, S ∩ e 6= ∅? If yes, we call S a vertex cover
of G of size at most k.

Let k ∈ N≥0 and let G = (V,E) be an undirected graph with vertex set V = {v0, v1, . . . ,

vn−1} and edge set E = {e0, e1, . . . , em−1}. From (G, k) we construct m + 1 DFAs over
the common alphabet Σ = {0, 1}. The input word for these automata will encode which
vertices are in the vertex cover. Therefore, we assume a linear order on V indicated by
the indices of the vertices. More precisely, a word accepted by all automata will have
a 1 at position j if and only if the vertex vj will be contained in the vertex cover S.
For a word w = a0a1 . . . a` with aj ∈ Σ for 0 ≤ j ≤ ` we denote w[j] = aj. We
may call a word w of length n a vertex cover and say that the vertex cover covers an
edge e = {vj1 , vj2} if w[j1] = 1 or w[j2] = 1.

For every edge ei = {vi1 , vi2} in E with i1 < i2, we construct a DFA Aei as depicted
in Figure 2 consisting of two chains, one of length n + 1 and one of length n − (i1 + 1)

(The length of a chain is the number of transitions in the chain). The DFA is defined as
Aei = (Q,Σ, δ, q0, F) with state set Q = { qj | 0 ≤ j ≤ n + 1 } ∪ { q′j | i1 + 1 ≤ j ≤ n }
and final states F = { qn+1, q′n }. We first focus on the states { qj | 0 ≤ j ≤ n + 1 }.
The idea is that there, the first n + 1 states correspond to the sequence of vertices and
reading a 1 at position j for which vj ∈ ei will cause the automaton to switch to the chain
consisting of states { q′j | i1 + 1 ≤ j ≤ n }. There, only one state is accepting namely
the state that we reach after reading a vertex cover of length exactly n that satisfies the
edge ei. Note that the paths from q0 to q′n are one transition shorten than the path from
q0 to qn+1. To be more formal, we define δ(qi1 , 1) = q′i1+1 and δ(qi2 , 1) = q′i2+1. All other
transitions are leading to the next state in the corresponding chain. Formally, we define
δ(qi1 , 0) = qi+1 and δ(qi2 , 0) = qi2+1, and for all 0 ≤ j ≤ n with j /∈ {i1, i2}, we define
δ(qj, σ) = qj+1, for both σ ∈ Σ, and for all i+ 1 ≤ j ≤ n− 1, we define δ(q′j, σ) = q′j+1.
We conclude the definition of δ by defining self-loops for the two accepting states, i.e., we
define δ(qn+1, σ) = qn+1 and δ(q′n, σ) = q′n for both σ ∈ Σ. Clearly, Aei is deterministic
and of size O(n).

Note that the only words of length exactly n that are accepted by Aei contain a 1 at
position i1 or position i2 and therefore cover the edge ei. All other words accepted by Aei
are of length at least n + 1. More precisely Aei accepts all words which are of size at
least n+ 1. Hence, we can describe the language accepted by Aei as

L(Aei) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1.

16

220 Intersection Non-emptiness for Star-Free Language Classes

Consider a word w ∈ L(Aei) of length n. W.l.o.g., assume w[i1] = 1. If we insert into w
one letter somewhere before or after position i1, then the size of w increases by 1 and
hence w falls into the subset Σ≥n+1 of L(Aei). Hence, we can rewrite the language L(Aei)

by the following equivalent expression.

L(Aei) = Σi1 · Σ∗ · 1 · Σn−i1−1 · Σ∗ ∪ Σi2 · Σ∗ · 1 · Σn−i2−1 · Σ∗ ∪ Σn+1Σ∗.

As we can rewrite a language of the form Σ`Σ∗ equivalently as a union of languages of
the form Σ∗w1Σ∗w2 . . . w`Σ

∗ for wi ∈ Σ, for 1 ≤ i ≤ `, it is clear that L(Aei) is a language
of level L1/2.

Next, we define a DFA A=n,≤k which accepts the finite language of all binary words of
length n which contain at most k appearances of the letter 1. We define A=n,≤k = ({qji |
0 ≤ i ≤ n+1, 0 ≤ j ≤ k+1},Σ, δ, q0

0, {qjn | j ≤ k}). The state graph of A=n,≤k is a (n, k)-
grid graph, where each letter increases the x dimension represented by the subscript i
up to the value n + 1, and each letter that is a 1 increases the y dimension represented
by the superscript j up to the value k + 1. More formally, we define δ(qji , 0) = qji+1,
and δ(qji , 1) = qj+1

i+1 for 0 ≤ i ≤ n and 0 ≤ j ≤ k; and δ(qji , σ) = qji for i = n + 1 or
j = k + 1. The size of A=n,≤k is bounded by O(nk). For readability, we defined A=n,≤k

as a non-minimal DFA. As L(A=n,≤k) is finite, it is of level B0 ⊆ L1.

By the arguments discussed above, the set of words accepted by all of the automata
(Aei)ei∈E and A=n,≤k are of size exactly n and encode a vertex cover for G of size at
most k.

4.3 Large Partially Ordered NFAs

The results obtained in the last subsection left open the precise complexity membership
of Intersection Non-emptiness in the case of input automata being NFAs without
any structural properties for the levels B1/2, L1, and L3/2. We devote this subsection to
the proof of Theorem 6, showing that already for languages of B0 being accepted by an
NFA, the size of an equivalent minimal poNFA can be exponential in the size of the NFA.

Theorem 6. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing
Ln has more than 2n−1 states.

Proof. While the statement requires languages over a binary alphabet, we begin by
constructing an auxiliary family (Mn)n∈N≥1

of languages over an unbounded alphabet.

17

221

For all n ∈ N≥1 we then define Ln by encodingMn with a binary alphabet, and we prove
three properties of these languages that directly imply the statement of the Theorem.

For every n ∈ N≥1, we define the languages M ′
n and M ′′

n over the alphabet {1, 2, . . . , n}
as follows. The language M ′

n contains all the words of odd length, and M ′′
n contains all

the words in which there are two occurrences of some letter i ∈ {1, 2, . . . , n} with only
letters smaller than i appearing in between.3 Formally,

M ′
n = {x ∈ {1, 2, . . . , n}∗ | |x| is odd },

M ′′
n = {xiyiz ∈ {1, 2, . . . , n}∗ | i ∈ {1, 2, . . . , n}, y ∈ {1, 2, . . . , i− 1}∗ }.

We then define Mn as the union M ′
n∪M ′′

n . Moreover, we define Ln by encoding Mn with
the binary alphabet {a, b}: Let us consider the function φn : {1, 2, . . . , n}∗ → {a, b}∗
defined by φ(i1i2 . . . im) = ai1bn−i1ai2bn−i2 . . . aimbn−im . We set Ln ⊆ {a, b}∗ as the union
of φn(Mn) with the language {a, b}∗ \ φ({1, 2, . . . , n}∗) containing all the words that are
not a proper encoding of some word in {1, 2, . . . , n}∗.

The statement of the theorem immediately follows from the following claims.

1. The languages Mn and Ln are cofinite, thus they are in B0.

2. The languages Mn and Ln are recognized by NFAs of size n+ 4, resp. O(n2).

3. Every poNFA recognizing either Mn or Ln has a size greater than 2n−1.

Proof of Item 1. We begin by proving that Mn is cofinite. Note that, by itself, the
language M ′

n is not in B0, as it is not even star-free. We show that M ′′
n is cofinite, which

directly implies that Mn = M ′
n ∪M ′′

n is also cofinite. This follows from the fact that
every word u ∈ {1, 2, . . . , n}∗ satisfying |u| ≥ 2n is in M ′′

n [Klein and Zimmermann,
2016]. This is easily proved by induction on n: If n = 1, we immediately get that
1j ∈M ′′

1 for every j ≥ 2 = 21: such a word contains two adjacent occurrences of 1. Now
suppose that n > 1, and that the property holds for n−1. Every word u ∈ {1, 2, . . . , n}∗
satisfying |u| ≥ 2n can be split into two parts u0, u1 such that |u0|, |u1| ≥ 2n−1. We
consider two possible cases, and prove that u ∈M ′′

n in both of them.

1. If either u0 or u1 contains no occurrence of the letter n, then by the induction
hypothesis, either u0 ∈M ′′

n−1 or u1 ∈M ′′
n−1, which directly implies that u ∈M ′′

n .

3The languages (M ′′n)n∈N≥1
were previously studied in [Klein and Zimmermann, 2016] with a game-

theoretic background. We also refer to [Naylor, 2011] for similar “fractal languages.”

18

222 Intersection Non-emptiness for Star-Free Language Classes

0 1

Σ

Σ

Figure 3: Automaton A′ recognizing M ′
n.

I F

q1

q2

...

qn

Σ Σ
< 2

< n

1 1

2 2

n n

Figure 4: Automaton A′′ recognizing M ′′
n .

2. If both u0 and u1 contain (at least) one occurrence of the letter n, then u ∈ M ′′
n

since it contains two occurrences of the letter n with only letters smaller than n

appearing in between (the latter part trivially holds, as n is the largest letter).

Finally, we also get that Ln is cofinite: for all u ∈ {a, b}∗ satisfying |u| ≥ 2n · n, either u
is not a proper encoding of a word of {1, 2, . . . , n}∗, thus u ∈ Ln, or u encodes a word
v ∈ {1, 2, . . . , n}∗ satisfying |v| ≥ 2n, hence v ∈Mn, which again implies that u ∈ Ln. C

Proof of Item 2. We first construct an NFA A of size n + 4 recognizing Mn =

M ′
n ∪M ′′

n as the disjoint union of an NFA A′ (Figure 3) of size 2 recognizing M ′
n and

an NFA A′′ (Figure 4) of size n + 2 recognizing M ′′
n . The language M ′

n of words of
odd length is trivially recognized by an NFA of size 2, thus we only need to build an
NFA A′′ = (Q, {1, 2, . . . , n}, δ, qI , {qF}) of size n + 2 that recognizes M ′′

n . The state
space Q is composed of the start state qI , the single final state qF , and n intermediate
states {q1, q2, . . . , qn}. The NFA A′′ behaves in three phases:

1. First, A′′ loops over its start state until it non-deterministically guesses that it will
read two copies of some i ∈ Σ with smaller letters in between: δ(qI , i) = {qI , qi}
for all i ∈ Σ.

19

223

2. To check its guess, A′′ loops in qi while reading letters smaller than i until it reads
a second i: δ(qi, j) = {qi} for all j ∈ {1, 2, . . . , i− 1} and δ(qi, i) = {qF}.

3. The final state qF is an accepting sink: δ(qF , j) = {qF} for all j ∈ Σ.

This definition guarantees that A′′ accepts the language M ′′
n .

Finally, we build an NFA B of size O(n2) that recognizes Ln by following similar ideas.
Once again, B is defined as the disjoint union of two NFAs B′ and B′′: The NFA B′ uses
4n states to check that either the input is not a proper encoding, or the input encodes a
word u ∈ {1, 2, . . . , n}∗ of odd length. Then, the NFA B′′ with O(n2) states is obtained
by adapting the NFA A′′ to the encoding of the letters {1, 2, . . . , n}: we split each of
the 2n intermediate transitions of A′′ into n parts by adding n − 1 states, and we add
2(n−1) states to each self-loop of A′′ in order to check that the encoding of an adequate
letter is read. C

Proof of Item 3. It is sufficient to prove the result for Mn, as we can transform each
poNFA A = (Q, {a, b}, δA, qI , F) recognizing Ln into a poNFA B = (Q, {1, 2, . . . , n}, δB,
qI , F) recognizing Mn with the same set of states by setting δB(q, i) = δA(q, aibn−i).

Note that, by itself, the language M ′′
n is recognized by the poNFA A of size n+ 2 defined

in the proof of Item 2. Let A′ be a poNFA recognizing Mn. To show that A′ has more
than 2n−1 states, we study its behavior on the Zimin words, defined as follows:

Let u1 = 1 and uj = uj−1juj−1 for all 1 < j ≤ n.

For instance, u4 = 121312141213121. It is known that |uj| = 2j − 1 and uj /∈ M ′′
n for

every 1 ≤ j ≤ n [Klein and Zimmermann, 2016]. These two properties are easily proved
by induction on j: Trivially, u1 is not in M ′′

1 and its size is 1 = 21−1. Now suppose that
j > 1 and that uj−1 satisfies both properties: |uj−1| = 2j−1−1 and uj−1 /∈M ′′

n . The first
property follows immediately from the induction hypothesis.

|uj| = |uj−1juj−1| = 2 · |uj−1|+ 1 = 2 · (2j−1 − 1) + 1 = 2j − 1;

To prove the induction step for the second property, we suppose, towards building a
contradiction, that uj ∈ M ′′

n . Then uj contains two occurrences of some letter i ∈
{1, 2, . . . , n} with only letters smaller than i appearing in between. Since uj contains
only one occurrence of the letter j and no letter is greater than j, i is strictly smaller
than j. Moreover, as only letters smaller than i (thus no j) can appear between these
two occurrences, they both need to appear in one of the copies of uj−1. Therefore uj−1

20

224 Intersection Non-emptiness for Star-Free Language Classes

is also in M ′′
n , which contradicts the induction hypothesis.

To conclude, remark that the word un is not in M ′′
n , but since |un| = 2n − 1 is odd, it

is in Mn = L(A′). Consider a sequence ρ ∈ Q∗ of states leading A′ from its start state
to a final state over the input un. Observe that the word un contains 2n−1 occurrences
of the letter 1, and deleting (any) one of these occurrences results in a word of even
length that is still not in M ′′

n , thus it is also not in Mn = L(A′). This proves that the
sequence ρ cannot loop over any of the 1’s in un. Moreover, as A′ is partially ordered
by assumption, once it leaves a state, it can never return to it. Therefore, ρ contains
at least 2n−1 + 1 distinct states while processing the 2n−1 occurrences of 1 in un, which
shows that the automaton A′ has more than 2n−1 many states. C

4.4 Commutative Star-Free Languages

In the case of commutative languages, we have a complete picture of the complexities
for both hierarchies, even for arbitrary input NFAs. Observe, that commutative lan-
guages generalize unary languages, where it is known that for unary star-free languages
both hierarchies collapse. For commutative star-free languages, a similar result holds,
employing [Hoffmann, 2021, Prop. 28].

Theorem 8. For commutative star-free languages the levels Ln of the Straubing-Thérien
and Bn of the dot-depth hierarchy coincide for all full and half levels, except for L0 and B0.
Moreover, the hierarchy collapses at level one.

Proof. The strict inclusion L0 ⊂ B0 even in the commutative case is obvious. Since
L1/2 ⊆ B1/2 we only need to show the converse inclusion in the case of commutative
languages. For the sake of notational simplicity, we shall give the proof only in a special
case. Observe that, by commutativity, if Σ∗abΣ∗ ⊆ L, then Σ∗aΣ∗bΣ∗ ⊆ L; moreover,
Σ∗abΣ∗ ⊆ Σ∗aΣ∗bΣ∗. Using this idea repeatedly for marked products, as they describe
languages from B1/2, we can write them as equivalent polynomials used for defining
languages from L1/2.

It remains to show that every commutative star-free language is contained in L1. As
shown in [Hoffmann, 2021, Prop. 28], every star-free commutative language can be writ-
ten as a finite union of languages of the form L = perm(u)� Γ∗ for some u ∈ Σ∗ and
Γ ⊆ Σ. Here perm(u) = {w ∈ Σ∗ | |u|a = |w|a for every a ∈ Σ }, where |w|a is equal
to the number of occurrences of a in w. Since perm(u) is a finite language, clearly,
language L is equal to the finite union of all v � Γ∗ for v ∈ perm(u), and thus belongs
to L3/2, since Γ ⊆ Σ.

21

225

Now, note that v�Σ∗ = Σ∗v1Σ∗ · · ·Σ∗v|v|Σ∗, where v = v1 · · · v|u| with vi ∈ Σ, is in level
1/2 of the Straubing-Thérien hierarchy. Further,

v� Γ∗ = (v� Σ∗) ∩
⋃

a∈Σ\Γ
perm(va)� Σ∗.

Hence, we can conclude containment in L1. As we have shown earlier that for commu-
tative languages B1/2 ⊆ L1/2, we get B1 ⊆ L1 and hence L is also contained in B1, and
both hierarchies collapse at level one for commutative languages.

Next we will give the results, summarized in Theorem 7, for the case of the commutative
(star-free) languages. The NP-hardness follows by a reduction from 3-CNF-SAT.

Lemma 7. The Intersection Non-emptiness problem is NP-hard for DFAs accept-
ing commutative languages in L1.

Proof. The NP-complete 3-CNF-SAT problem is defined as follows: given a Boolean for-
mula ϕ as a set of clauses C = {c1, c2, . . . , cm} over a set of variables V = {x1, x2, . . . , xn}
such that |ci| ≤ 3 for i ≤ m. Is there a variable assignment β : V → {0, 1} such that ϕ
evaluates to true under β?

Let ϕ be a Boolean formula in 3-CNF with clause set C = {c1, c2, . . . , cm} and variable
set V = {x1, x2, . . . , xn}. Let Σ = {x1, x2, . . . , xn, x1, x2, . . . , xn}. It is straightforward
to construct polynomial-size DFAs for the following languages from L1:

Lci =
⋃

x∈ci
Σ∗xΣ∗ and Lxj = Σ∗ \ (Σ∗xjΣ

∗xjΣ
∗ ∪ Σ∗xjΣ

∗xjΣ
∗) ,

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, the intersection of all Lci and all Lxj is
non-empty if and only if the 3-CNF-SAT instance ϕ is satisfiable.

The upper bound shown next also holds for arbitrary commutative languages.

Theorem 9. The Intersection Non-emptiness problem for NFAs accepting arbi-
trary, i.e., not necessarily star-free, commutative languages is in NP.

Proof. It was shown in [Stockmeyer and Meyer, 1973] that the problem Intersec-

tion Non-emptiness is NP-complete for unary NFAs as input. Fix some order Σ =

{a1, a2, . . . , ar} of the input alphabet. Let A1, A2, . . . , Am be the NFAs accepting com-
mutative languages with Ai = (Qi,Σ, δi, q0,i, Fi) for 1 ≤ i ≤ m. Without loss of gen-
erality, we may assume that every Fi is a singleton set, namely Fi = {qf,i}. For each
1 ≤ i ≤ m and 1 ≤ j ≤ r, let Bi,j be the automaton over the unary alphabet {aj}

22

226 Intersection Non-emptiness for Star-Free Language Classes

q3 q2 q0 q1

a

aa

a
a

Figure 5: An example of a non-totally star-free NFA that accepts a star-free language.

obtained from Ai by deleting all transitions labeled with letters different from aj and
only retaining those labeled with aj. Each Bi,j will have one initial and one final
state. Let ~q0 = (q0,1, q0,2, . . . , q0,m) be the tuple of initial states of the NFAs; they
are the initial states of B1,1, B2,1, . . . , Bm,1, respectively. Then, non-deterministically
guess further tuples ~qj from Q1 × Q2 × . . . × Qm for 1 ≤ j ≤ r − 1. The jth tuple
is considered as collecting the final states of the Bi,j but also as the start states for
the Bi,j+1. Finally, let ~qf = (qf,1, qf,2, . . . , qf,m) and consider this as the final states of
B1,r, B2,r, . . . , Bm,r. Then, for each 1 ≤ j ≤ r solve Intersection Non-emptiness

for the unary automata B1,j, B2,j, . . . , Bm,j. If there exist words wj in the intersection of
L(B1,j), L(B2,j), . . . , L(Bm,j), for each 1 ≤ j ≤ r, then, by commutativity, there exists
one in a∗1a∗2 · · · a∗r, namely, w1w2 · · ·wm, and so the above procedure finds it. Conversely,
if the above procedure finds a word, this is contained in the intersection of the languages
induced by the Ai’s.

For fixed alphabets, we have a polynomial-time algorithm, showing that the Intersec-

tion Non-emptiness problem, with the alphabet size as a parameter, is in XP, for
totally star-free NFAs accepting star-free commutative languages. We say that an NFA
A = (Q,Σ, δ, q0, F) is totally star-free, if the language accepted by qAp = (Q,Σ, δ, q, {p})
is star-free for any states q, p ∈ Q. For instance, poNFAs are totally star-free.

An example of a non-totally star-free NFA accepting a star-free language is given next.
Consider the following NFA A = ({q0, q1, q2, q3}, δ, q0, {q0, q2}) with δ(q0, a) = {q1, q2},
δ(q1, a) = {q0}, δ(q2, a) = {q3}, and δ(q3, a) = {q2} that accepts the language {a}∗.
The automaton is depicted in Figure 5. Yet, neither L(q0Aq0) = {aa}∗ nor L(q0Aq2) =

{a}{aa}∗ ∪ {ε} are star-free.

The proof of the following theorem uses classical results of Chrobak and Schützen-
berger [Chrobak, 1986,Schützenberger, 1965].

Theorem 10. The Intersection Non-emptiness problem for totally star-free NFAs
accepting star-free commutative languages, i.e., commutative languages in L1, is con-
tained in XP with the size of the alphabet as the parameter.

The proof of Theorem 10 is based on a combinatorial result that might be of independent
interest.

23

227

Lemma 8. Let n ≥ 1 and ti, pi ∈ N≥0 for 1 ≤ i ≤ n. Set X =
⋃n
i=1 (ti + N≥0 · pi),

where N≥0 · pi = {x · pi | x ∈ N≥0}. If there exists a threshold T ≥ 0 such that N≥T ⊆ X,
then already for Tmax = max{ ti | 1 ≤ i ≤ n }, we find N≥Tmax ⊆ X.

Proof. The assumption basically says that every integer y greater than T−1 is congruent
to t` modulo p` for some 1 ≤ ` ≤ n. More specifically, if x is an arbitrary number with
x ≥ Tmax, then y = x + T · lcm{p1, p2, . . . , pn} is congruent to t` modulo p` for some
1 ≤ ` ≤ n. But this implies that x itself is congruent to t` modulo p`, and so, as x ≥ t`,
we can write x = t` + k` · p` for some k` ≥ 0, i.e., x ∈ X.

This result can be used to prove a polynomial bound for star-free unary languages on
an equivalence resembling Schützenberger’s characterization of star-freeness [Schützen-
berger, 1965].

Lemma 9. Let L be a unary star-free language specified by an NFA A with n states.
Then, there is a number N of order O(n2) such that aN ∈ L if and only if for all k ∈ N≥0,
aN+k ∈ L.

Proof. By a classical result of Chrobak [Chrobak, 1986], the given NFA A on n states
can be transformed into a normal form where we have an initial tail with length at
most O(n2) that branches at a common endpoint into several cycles, where every cycle
is of size at most n, see [Chrobak, 1986, Lemma 4.3]. Moreover, this transformation
can be performed in polynomial time [Gawrychowski, 2011]. Note that a unary star-free
language is either finite or co-finite [Brzozowski, 1976]. If L is finite, then there are no
final states on the cycles and we can set N to be equal to the length of the tail, plus
one. Otherwise, if L ⊆ {a}∗ is co-finite, then it can be expressed as a union of a finite
language corresponding to the final states on the tail and finitely many languages of the
form { a` | ` ∈ (t + N≥0 · p) }, where the numbers t and p are induced by the Chrobak
normal form. Then we can apply Lemma 8, where the set X is built from the t’s and p’s,
and where the t’s are bounded by Tmax, the sum of the longest tail and the largest cycle,
plus one. Note that Tmax is in O(n2) and that the threshold from Lemma 8 guarantees
that every word a` with ` ≥ Tmax is a member of L, as desired.

Theorem 10. The Intersection Non-emptiness problem for totally star-free NFAs
accepting star-free commutative languages, i.e., commutative languages in L1, is con-
tained in XP with the size of the alphabet as the parameter.

Proof. Let Ai = (Qi,Σ, δi, qi, Fi), for i ∈ {1, 2, . . . ,m}, be totally star-free NFAs accept-
ing commutative languages. Let ni = |Qi| be the number of states of Ai. Fix some order
Σ = {a1, a2, . . . , ar}.

24

228 Intersection Non-emptiness for Star-Free Language Classes

For 1 ≤ i ≤ m and 1 ≤ j ≤ r, as well as q, p ∈ Qi, let the automaton Bi,j,q,p =

(Qi, {aj}, δi, q, {p}) be obtained from Ai by deleting all transitions not labeled with the
letter aj and only retaining those labeled with aj. Further, let Ai,q,p be obtained from
Ai by taking q as (new) initial state and p as the new (and only) final state. As Ai is
totally star-free, L(Ai,q,p) is also star-free. By Schützenberger’s Theorem characterizing
star-freeness [Schützenberger, 1965], it is immediate that L(Ai,q,p) ∩ Γ∗ is also star-free
for each Γ ⊆ Σ. In particular, L(Bi,j,q,p) = L(Ai,q,p)∩{aj}∗ is star-free and commutative.

Recall that perm(u) = {w ∈ Σ∗ | |u|a = |w|a for every a ∈ Σ }, where |w|a is equal to
the number of letters a in w. Moreover, perm(L) =

⋃
v∈L perm(v). By commutativity,

the following property is clear:

L(Ai) = perm

 ⋃

p1,p2,...,pr−1∈Qi

⋃

pr∈Fi

L(Bi,1,qi,p1) · L(Bi,2,p1,p2) · · ·L(Bi,r,pr−1,pr)

 .

As Ai accepts a commutative language, by ordering the letters, we find that w ∈ L(Ai)

if and only if a`11 a
`2
2 · · · a`rr ∈ L(Ai), for `j being the number of occurrences of aj in w,

with 1 ≤ j ≤ r. Furthermore, the word a`11 a
`2
2 · · · a`rr is in L(Ai) if and only if for all j

with 1 ≤ j ≤ r, there is a state pj ∈ Qi such that a`jj ∈ L(Bi,j,pj−1,pj), where p0 = qi and
pr ∈ Fi. We can apply Lemma 9 to get constants Ni,1, Ni,2, . . . , Ni,r ∈ O(n2

i) such that
checking membership of a`jj in L(Bi,j,pj−1,pj) can be restricted to checking membership
for a word of length at most Nj. Now, we describe a polynomial-time procedure to solve
Intersection Non-emptiness for fixed alphabets. Set Ni = max{Ni,1, Ni,2, . . . , Ni,r}
with the numbers Ni,j from above. Then, we know that a word a`11 a

`2
2 · · · a`rr is accepted

by an input automaton Ai if and only if the word a
min{`1,Ni}
1 a

min{`2,Ni}
2 · · · amin{`r,Ni}

r is
accepted by it. If we let N = max{N1, N2, . . . , Nr}, we only need to test the (N + 1)r

many words ai11 a
i2
2 · · · airr with 0 ≤ ij ≤ N and 1 ≤ j ≤ r if we can find a word among

them that is accepted by all automata Ai for 1 ≤ i ≤ m. Altogether, ignoring polynomial
factors, this leads to a running time of the form O∗(N r).

Remark 2. Note that Theorem 10 does not hold for arbitrary commutative languages
concerning a fixed alphabet, since in the general case, the problem is NP-complete even
for languages over a common unary alphabet [Stockmeyer and Meyer, 1973].

25

229

5 PSPACE-Completeness

Here, we prove that even when restricted to languages from B1 or L2, Intersection

Non-emptiness is PSPACE-complete, as it is for unrestricted DFAs or NFAs. We
will profit from the close relations of Intersection Non-emptiness to the Non-

universality problem for NFAs: Given an NFA A with input alphabet Σ, decide if
L(A) 6= Σ∗. Conversely, we can also observe that Non-universality for NFAs is
PSPACE-complete for languages from B1.

Theorem 11. The Intersection Non-emptiness problem for DFAs or NFAs ac-
cepting languages from B1 or L2 is PSPACE-complete, even for binary input alphabets.

As B1 ⊆ L2, it is sufficient to show that the problem is PSPACE-hard for B1. While
without paying attention to the size of the input alphabet, this result can be readily
obtained by re-analyzing Kozen’s original proof in [Kozen, 1977], the restriction to binary
input alphabets needs some more care. We modify the proof of Theorem 3 in [Krötsch
et al., 2017] that showed PSPACE-completeness for Non-universality for poNFAs
(that characterize the level 3/2 of the Straubing-Thérien hierarchy). Also, it can be
observed that the languages involved in the intersection are actually locally testable
languages. The class of locally testable languages is a sub-class of B1 and consists of the
Boolean closure of languages of the form uΣ∗, Σ∗v, and Σ∗wΣ∗ where u, v, w are words
from Σ∗, see [Pin, 2017].

Corollary 1. The Intersection Non-emptiness problem for DFAs or NFAs accept-
ing locally testable languages is PSPACE-complete, even for binary input alphabets.

Proof. To see our claims, we re-analyze the proof of Theorem 3 in [Krötsch et al., 2017]
that shows PSPACE-completeness for the closely related Non-universality problem
for NFAs. Similar to Kozen’s original proof, this gives a reduction from the general
word problem of deterministic polynomial-space bounded Turing Machines. In the proof
of Theorem 3 in [Krötsch et al., 2017] that showed PSPACE-completeness for Non-

universality for poNFAs (that characterize the level 3/2 of the Straubing-Thérien
hierarchy), a polynomial number of binary languages Li was constructed such that⋃
i Li 6= {0, 1}∗ if and only if the p-space-bounded Turing machine M , where p is

some polynomial, accepts a word x ∈ {0, 1}∗ using space p(|x|). Observe that each
of the languages Li is a polynomial union of languages of the forms E{0, 1}∗, {0, 1}∗E,
{0, 1}∗E{0, 1}∗, or E for finite binary languages E. This means that each Li belongs
to B1/2. Now, observe that

⋃
i Li 6= {0, 1}∗ if and only if

⋂
i Li 6= ∅. As Li ∈ B1 and

each Li (and hence its complement Li) can be described by a polynomial size DFA, the
claims follow.

26

230 Intersection Non-emptiness for Star-Free Language Classes

By the proof of Theorem 3 in [Krötsch et al., 2017], also
⋃
i Li belongs to B1, so that we

can conclude:

Corollary 2. The Non-universality problem for NFAs accepting languages from B1

is PSPACE-complete, even for binary input alphabets.

We now present all proof details, because the construction is somewhat subtle.

The proof is based on simulating a p-space-bounded Turing machine M . We are inter-
ested in simulating a run of M on a string x. Its configurations are encoded as words
over an alphabet ∆, so that with the help of the enhanced alphabet ∆# = ∆ ∪ {#},
runs of M can be encoded, with # serving as a separator between configurations. More
precisely, if ΣM is the input alphabet of M , ΓM (containing a special blank symbol)
is the tape alphabet, and QM is the state alphabet, then transitions take the form
fM : QM × ΓM → QM × ΓM × {L,R}, where L,R indicate the movements of the head.
For simplicity, define ∆ = ΓM×(QM∪{$}). A configuration γ ∈ ∆+ has then the specific
properties that it contains exactly one symbol from ΓM×QM and that it has length p(|x|)
always, i.e., we are possibly filling up a string that is too short by the blank symbol .
Configuration sequences ofM , or runs for short, can be encoded by words from #(∆+#)∗,
or more precisely, from Lsimple−run = #((ΓM × {$})∗(ΓM × QM)(ΓM × {$})∗#)∗. The
latter language can be encoded by a 3-state DFA. However, we will not make use of this
language in the following, as it does not fit in the level of the dot-depth hierarchy that
we are aiming at.

Let Σ = {0, 1} be the binary target alphabet. A letter a ∈ ∆# is first encoded by a
binary word â of length K = dlog2(|∆#|)e, but this is only an auxiliary encoding, used
to define the block-encoding

enc(a) = 001â[1]1â[2]1 · · · â[K]1

of length L = 2K+3, where â[1] is the first symbol of the word â, and so on. This block-
encoding is extended to words and sets of words as usual. In order to avoid some case
distinctions, we assume that |∆#| is a power of two, so that enc(∆#) = 001Σ1Σ1 · · ·Σ1.
Hence, enc(∆#) = 00ΣL−2 \ enc(∆#) = 00{a1b1a2b2 · · · aKbK | a1a2 · · · aK ∈ ΣK ∧
b1b2 · · · bK ∈ 1∗0Σ∗}. Clearly, there are DFAs with O(L) many states accepting enc(∆#)

and enc(∆#) (†). In this proof, we will call DFAs with O(L · p(|x|)) many states small.
Any encoded word enc(w), with w ∈ ∆∗#, contains the factor 00 only at positions (minus
one) that are multiples of L, more precisely: enc(w)[i] = enc(w)[i + 1] = 0 if and
only if i − 1 is divisable by L. This observation allows us to construct small DFAs for
Σ∗ enc(∆#)cΣ∗ (for c ∈ {1, 01}) and for Σ∗ enc(∆#)Σ∗, based on (†). As shown in the
proof of Theorem 3 in [Krötsch et al., 2017], the language of words that are not encodings

27

231

over ∆# at all is the union of the following languages:

1. (1 ∪ 01)Σ∗,

2. Σ∗ enc(∆#)Σ∗,

3. Σ∗ enc(∆#)(1 ∪ 01)Σ∗, and

4. Σ∗00(
⋃L−3
i=1 Σi) = {w ∈ Σ∗ | The factor 00 is in the last L− 1 positions}.

Each of these languages can be accepted by small DFAs A1, A2, A3, A4.

Then, we have to take care of the binary words that cannot be encodings of configuration
sequences, because the first configuration is not initial. By our construction, the (unique)
initial configuration γ is encoded by a binary string enc(γ) of length L · p(|x|), i.e., we
consider a language L′ which is the complement of enc(#γ#)Σ∗, the language of all
binary strings that do not start with the encoding of the initial configuration. Let #γ# =

a1a2 · · · ap(|x|)+2. As we already described non-encodings by automata A1 through A4,
instead of L′, we describe

⋃p(|x|)+2
j=0 L′j, where L′0 is the set of all words of which their

length is not divisible by L and bounded by L · (p(|x|) + 2). Intuitively, L′0 is the set
of strings that are too short and further contains the empty word. We further define
L′j = Σ(j−1)L enc(aj)Σ

∗ for j = 1 to p(|x|) + 2, describing a violation at symbol aj of the
initial configuration γ. Moreover, there are small DFAs A5, A6, . . . , Ap(|x|)+7 that accept
L′0, L

′
1, . . . , Lp(|x|)+2.

Assuming a unique final state and also assuming that M cleans up the tape after pro-
cessing, there is a unique final configuration γf that should be reached. Then, invalidity
of a computation with respect to the final configuration can be checked as for the initial
configuration, giving us small DFAs Ap(|x|)+8, Ap(|x|)+9, . . . , A2p(|x|)+10.

Finally, we want to check the (complement of the) following property of a valid con-
figuration sequence ρ ∈ #(∆+#)∗: any sequence of three letters a, b, c in ρ determines
the letter f(a, b, c) that should be present at a distance of p(|x|)− 1 to the right. More
precisely, we are interested in any factor abcvdf(a, b, c)e of ρ where |vd| = p(|x|) − 1.
Different scenarios can occur; we only describe three typical situations in the following.

• If a = (a′, $), b = (b′, $), c = (c′, $), then f(a, b, c) = b. For d, we know d ∈
{a′} × (Q ∪ {$}) and similarly for e, we know e ∈ {c′} × (Q ∪ {$}).

• If a = (a′, $), b = #, c = (c′, $), then f(a, b, c) = #. For d, we know d ∈
{a′} × (Q ∪ {$}) and similarly for e, we know e ∈ {c′} × (Q ∪ {$}).

28

232 Intersection Non-emptiness for Star-Free Language Classes

• If a = (a′, $), b = (b′, q), c = (c′, $) and if fM(q, b′) = (p, b̂′, L), then d = (a′, p),
f(a, b, c) = (b̂, $), and e = c.

We refrain from describing all such situations in detail. Yet with some more sloppiness,
we write enc(d(f(a, b, c)e) for all situations that do not obey the rules for df(a, b, c)e

as tentatively formulated before. Now, for each triple a, b, c ∈ ∆#, consider the binary
language La,b,c = Σ∗ · enc(abc) ·ΣL·(p(|x|)−1) · enc(d(f(a, b, c)e) ·Σ∗. This language can be
accepted by a small DFA Aa,b,c.

Altogether, we described 2p(|x|) + 10 + (|∆#|)3 many languages from B1 such that their
union does not yield Σ∗ if and only ifM accepts x using p(|x|) space. Moreover, for each
of the languages, we can build small DFAs.

6 Conclusion and Open Problems

We have investigated how the increase in complexity within the dot-depth and the
Straubing-Thérien hierarchies is reflected in the complexity of the Intersection Non-

emptiness problem. We have shown the complexity of this problem is already com-
pletely determined by the very first levels of either hierarchy.

Our work leaves open some very interesting questions and directions of research. First,
we were not able to prove containment in NP for the Intersection Non-emptiness

problem when the input automata are allowed to be NFAs accepting a language in the
level 3/2 or in the level 1 of the Straubing-Thérien hierarchy. Interestingly, we have shown
that such containment holds in the case of DFAs, but have shown that the technique
we have used to prove this containment does not carry over to the context of NFAs. In
particular, to show this we have provided the first exponential separation between the
state complexity of general NFAs and partially ordered NFAs. The most immediate open
question is if Intersection Non-emptiness for NFAs accepting languages in B1/2, L1,
or L3/2 is complete for some level higher up in the polynomial-time hierarchy (PH), or if
this case is already PSPACE-complete. Another tantalizing open question is whether one
can capture the levels of PH in terms of the Intersection Non-emptiness problem
when the input automata are assumed to accept languages belonging to levels of a sub-
hierarchy of L2. Such sub-hierarchies have been considered for instance in [Klíma and
Polák, 2011].

It would also be interesting to have a systematic study of these two well-known sub-
regular hierarchies for related problems like Non-universality for NFAs or Union

Non-universality for DFAs. Notice the technicality that Union Non-universality

29

233

(similar to Intersection Non-emptiness) has an implicit Boolean operation (now
union instead of intersection) within the problem statement, while Non-universality

lacks this implicit Boolean operation. This might lead to a small “shift” in the discussions
of the hierarchy levels that involve Boolean closure. Another interesting hierarchy is the
group hierarchy [Pin, 1998], where we start with the group languages, i.e., languages
acceptable by automata in which every letter induces a permutation of the state set, at
level 0. Note that for group languages, Intersection Non-emptiness is NP-complete
even for a unary alphabet [Stockmeyer and Meyer, 1973]. As Σ∗ is a group language,
the Straubing-Thérien hierarchy is contained in the corresponding levels of the group
hierarchy, and hence, we get PSPACE-hardness for level 2 and above in this hierarchy.
However, we do not know what happens in the levels in between.

References

[Abdulla, 2012] Abdulla, P. A. (2012). Regular model checking. International Journal
on Software Tools for Technology Transfer, 14(2):109–118.

[Almeida and Klíma, 2010] Almeida, J. and Klíma, O. (2010). New decidable upper
bound of the second level in the Straubing-Thérien concatenation hierarchy of star-
free languages. Discrete Mathematics & Theoretical Computer Science, 12(4):41–58.

[Bouajjani et al., 2000] Bouajjani, A., Jonsson, B., Nilsson, M., and Touili, T. (2000).
Regular model checking. In Emerson, E. A. and Sistla, A. P., editors, Computer Aided
Verification, 12th International Conference, CAV, volume 1855 of Lecture Notes in
Computer Science, pages 403–418. Springer.

[Bouajjani et al., 2007] Bouajjani, A., Muscholl, A., and Touili, T. (2007). Permutation
rewriting and algorithmic verification. Information and Computation, 205:199–224.

[Brzozowski, 1976] Brzozowski, J. A. (1976). Hierarchies of aperiodic languages. RAIRO
Informatique théorique et Applications/Theoretical Informatics and Applications,
10(2):33–49.

[Brzozowski and Fich, 1980] Brzozowski, J. A. and Fich, F. E. (1980). Languages of
R-trivial monoids. Journal of Computer and System Sciences, 20(1):32–49.

[Brzozowski and Knast, 1978] Brzozowski, J. A. and Knast, R. (1978). The dot-depth
hierarchy of star-free languages is infinite. Journal of Computer and System Sciences,
16(1):37–55.

30

234 Intersection Non-emptiness for Star-Free Language Classes

[Cho and Huynh, 1991] Cho, S. and Huynh, D. T. (1991). Finite-automaton aperiodicity
is PSPACE-complete. Theoretical Computer Science, 88(1):99–116.

[Chrobak, 1986] Chrobak, M. (1986). Finite automata and unary languages. Theoretical
Computer Science, 47(3):149–158.

[Cohen and Brzozowski, 1971] Cohen, R. S. and Brzozowski, J. A. (1971). Dot-depth of
star-free events. Journal of Computer and System Sciences, 5(1):1–16.

[Fernau and Krebs, 2017] Fernau, H. and Krebs, A. (2017). Problems on finite automata
and the exponential time hypothesis. Algorithms, 10(1):24.

[Flum and Grohe, 2006] Flum, J. and Grohe, M. (2006). Parameterized Complexity The-
ory. Springer.

[Gawrychowski, 2011] Gawrychowski, P. (2011). Chrobak normal form revisited, with
applications. In Bouchou-Markhoff, B., Caron, P., Champarnaud, J., and Maurel, D.,
editors, Implementation and Application of Automata - 16th International Conference,
CIAA, volume 6807 of Lecture Notes in Computer Science, pages 142–153. Springer.

[Glaßer and Schmitz, 2000] Glaßer, C. and Schmitz, H. (2000). Decidable hierarchies of
starfree languages. In Kapoor, S. and Prasad, S., editors, Foundations of Software
Technology and Theoretical Computer Science, 20th Conference, FST TCS, volume
1974 of Lecture Notes in Computer Science, pages 503–515. Springer.

[Glaßer and Schmitz, 2001] Glaßer, C. and Schmitz, H. (2001). Level 5/2 of the
Straubing-Thérien hierarchy for two-letter alphabets. In Kuich, W., Rozenberg, G.,
and Salomaa, A., editors, Developments in Language Theory, 5th International Con-
ference, DLT, volume 2295 of Lecture Notes in Computer Science, pages 251–261.
Springer.

[Hartmanis et al., 1978] Hartmanis, J., Immerman, N., and Mahaney, S. R. (1978). One-
way log-tape reductions. In 19th Annual Symposium on Foundations of Computer
Science, FOCS, pages 65–72. IEEE Computer Society.

[Hoffmann, 2021] Hoffmann, S. (2021). Regularity conditions for iterated shuffle on com-
mutative regular languages. In Maneth, S., editor, Implementation and Application
of Automata - 25th International Conference, CIAA 2021, Virtual Event, July 19-22,
2021, Proceedings, volume 12803 of Lecture Notes in Computer Science, pages 27–38.
Springer.

[Hunt III and Rosenkrantz, 1978] Hunt III, H. B. and Rosenkrantz, D. J. (1978). Com-
putational parallels between the regular and context-free languages. SIAM Journal
on Computing, 7(1):99–114.

31

235

[Karakostas et al., 2003] Karakostas, G., Lipton, R. J., and Viglas, A. (2003). On the
complexity of intersecting finite state automata and NL versus NP. Theoretical Com-
puter Science, 302(1):257–274.

[Kasai and Iwata, 1985] Kasai, T. and Iwata, S. (1985). Gradually intractable prob-
lems and nondeterministic log-space lower bounds. Mathematical Systems Theory,
18(1):153–170.

[Klein and Zimmermann, 2016] Klein, F. and Zimmermann, M. (2016). How much
lookahead is needed to win infinite games? Logical Methods in Computer Science,
12(3).

[Klíma and Polák, 2011] Klíma, O. and Polák, L. (2011). Subhierarchies of the second
level in the Straubing-Thérien hierarchy. International Journal of Algebra and Com-
putation, 21(7):1195–1215.

[Kozen, 1977] Kozen, D. (1977). Lower bounds for natural proof systems. In 18th An-
nual Symposium on Foundations of Computer Science, FOCS, pages 254–266. IEEE
Computer Society.

[Krötsch et al., 2017] Krötsch, M., Masopust, T., and Thomazo, M. (2017). Complexity
of universality and related problems for partially ordered NFAs. Information and
Computation, 255:177–192.

[Lange and Rossmanith, 1992] Lange, K. and Rossmanith, P. (1992). The emptiness
problem for intersections of regular languages. In Havel, I. M. and Koubek, V., editors,
Mathematical Foundations of Computer Science 1992, 17th International Symposium,
MFCS, volume 629 of Lecture Notes in Computer Science, pages 346–354. Springer.

[Masopust, 2018] Masopust, T. (2018). Separability by piecewise testable languages is
PTime-complete. Theoretical Computer Science, 711:109–114.

[Masopust and Krötzsch, 2021] Masopust, T. and Krötzsch, M. (2021). Partially ordered
automata and piecewise testability. Logical Methods in Computer Science, 17(2).

[Masopust and Thomazo, 2015] Masopust, T. and Thomazo, M. (2015). On the com-
plexity of k-piecewise testability and the depth of automata. In Potapov, I., editor,
Developments in Language Theory - 19th International Conference, DLT, number 9168
in Lecture Notes in Computer Science, pages 364–376. Springer.

[Morawietz et al., 2020] Morawietz, N., Rehs, C., and Weller, M. (2020). A timecop’s
work is harder than you think. In Esparza, J. and Král’, D., editors, 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August

32

236 Intersection Non-emptiness for Star-Free Language Classes

24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 71:1–71:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

[Naylor, 2011] Naylor, M. (2011). Abacaba! – using a mathematical pattern to connect
art, music, poetry and literature. Bridges, pages 89–96.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity.
Addison-Wesley.

[Pin, 1998] Pin, J. (1998). Bridges for concatenation hierarchies. In Larsen, K. G.,
Skyum, S., and Winskel, G., editors, Automata, Languages and Programming, 25th
International Colloquium, ICALP, volume 1443 of Lecture Notes in Computer Science,
pages 431–442. Springer.

[Pin, 2017] Pin, J. (2017). The dot-depth hierarchy, 45 years later. In Konstantinidis,
S., Moreira, N., Reis, R., and Shallit, J. O., editors, The Role of Theory in Computer
Science - Essays Dedicated to Janusz Brzozowski, pages 177–202. World Scientific.

[Place and Zeitoun, 2019] Place, T. and Zeitoun, M. (2019). Generic results for concate-
nation hierarchies. Theory of Computing Systems, 63(4):849–901.

[Rampersad and Shallit, 2010] Rampersad, N. and Shallit, J. (2010). Detecting pat-
terns in finite regular and context-free languages. Information Processing Letters,
110(3):108–112.

[Savitch, 1970] Savitch, W. J. (1970). Relationships between nondeterministic and deter-
ministic tape complexities. Journal of Computer and System Sciences, 4(2):177–192.

[Schützenberger, 1965] Schützenberger, M. P. (1965). On finite monoids having only
trivial subgroups. Information and Control, 8(2):190–194.

[Schwentick et al., 2001] Schwentick, T., Thérien, D., and Vollmer, H. (2001). Partially-
ordered two-way automata: A new characterization of DA. In Kuich, W., Rozenberg,
G., and Salomaa, A., editors, Developments in Language Theory, 5th International
Conference, DLT, volume 2295 of Lecture Notes in Computer Science, pages 239–250.
Springer.

[Stockmeyer and Meyer, 1973] Stockmeyer, L. J. and Meyer, A. R. (1973). Word prob-
lems requiring exponential time: Preliminary report. In Aho, A. V., Borodin, A.,
Constable, R. L., Floyd, R. W., Harrison, M. A., Karp, R. M., and Strong, H. R.,
editors, 5th Annual Symposium on Theory of Computing, STOC, pages 1–9. ACM.

[Straubing, 1981] Straubing, H. (1981). A generalization of the Schützenberger product
of finite monoids. Theoretical Computer Science, 13:137–150.

33

237

[Straubing, 1985] Straubing, H. (1985). Finite semigroup varieties of the form V ∗D.
Journal of Pure and Applied Algebra, 36:53–94.

[Sudborough, 1975] Sudborough, I. H. (1975). On tape-bounded complexity classes and
multihead finite automata. Journal of Computer and System Sciences, 10(1):62–76.

[Thérien, 1981] Thérien, D. (1981). Classification of finite monoids: the language ap-
proach. Theoretical Computer Science, 14(2):195–208.

[Wareham, 2000] Wareham, T. (2000). The parameterized complexity of intersection
and composition operations on sets of finite-state automata. In Yu, S. and Paun, A.,
editors, Implementation and Application of Automata, 5th International Conference,
CIAA, volume 2088 of Lecture Notes in Computer Science, pages 302–310. Springer.

[Wehar, 2014] Wehar, M. (2014). Hardness results for intersection non-emptiness. In
Esparza, J., Fraigniaud, P., Husfeldt, T., and Koutsoupias, E., editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP, Part II, vol-
ume 8573 of Lecture Notes in Computer Science, pages 354–362. Springer.

[Wehar, 2016] Wehar, M. (2016). On the Complexity of Intersection Non-Emptiness
Problems. PhD thesis, University at Buffalo.

34

238 Intersection Non-emptiness for Star-Free Language Classes

Chapter 12

Decomposing Permutation

Automata

Ismaël Jecker, Nicolas Mazzocchi, and Petra Wolf.

An extended abstract appeared in the proceedings of CONCUR 2021:

Leibniz International Proceedings in Informatics (LIPIcs) 203 (2021) pp. 18:1 – 18:19.

DOI: 10.4230/LIPIcs.CONCUR.2021.18.

https://doi.org/10.4230/LIPIcs.CONCUR.2021.18

240 Decomposing Permutation Automata

Decomposing Permutation Automata

Ismaël Jecker∗1, Nicolas Mazzocchi2, and Petra Wolf†3

1Institute of Science and Technology, Klosterneuburg, Austria
2IMDEA Software Institute, Madrid, Spain

3Universität Trier, Germany

Abstract

A deterministic finite automaton (DFA) A is composite if its language L(A)
can be decomposed into an intersection

⋂k
i=1 L(Ai) of languages of smaller DFAs.

Otherwise, A is prime. This notion of primality was introduced by Kupferman
and Mosheiff in 2013, and while they proved that we can decide whether a DFA

is composite, the precise complexity of this problem is still open, with a doubly-
exponential gap between the upper and lower bounds. In this work, we focus on
permutation DFAs, i.e., those for which the transition monoid is a group. We
provide an NP algorithm to decide whether a permutation DFA is composite, and
show that the difficulty of this problem comes from the number of non-accepting
states of the instance: we give a fixed-parameter tractable algorithm with the
number of rejecting states as the parameter. Moreover, we investigate the class
of commutative permutation DFAs. Their structural properties allow us to decide
compositionality in NL, and even in LOGSPACE if the alphabet size is fixed. Despite
this low complexity, we show that complex behaviors still arise in this class: we
provide a family of composite DFAs each requiring polynomially many factors with
respect to its size. We also consider the variant of the problem that asks whether
a DFA is k-factor composite, that is, decomposable into k smaller DFAs, for some
given integer k ∈ N. We show that, for commutative permutation DFAs, restricting
the number of factors makes the decision computationally harder, and yields a
problem with tight bounds: it is NP-complete. Finally, we show that in general,
this problem is in PSPACE, and it is in LOGSPACE for DFAs with a singleton
alphabet.

∗The author was supported by Marie Skłodowska-Curie Grant Agreement No. 754411
†The author was supported by DFG-funded project FE560/9-1

1

241

1 Introduction

Compositionality is a fundamental notion in numerous fields of computer science
[de Roever et al., 1998]. This principle can be summarized as follows: Every system
should be designed by composing simple parts such that the meaning of the system can
be deduced from the meaning of its parts, and how they are combined. For instance, this
is a crucial aspect of modern software engineering: a program split into simple modules
will be quicker to compile and easier to maintain. The use of compositionality is also
essential in theoretical computer science: it is used to avoid the state explosion issues
that usually happen when combining parallel processes together, and also to overcome
the scalability issues of problems with a high theoretical complexity. In this work, we
study compositionality in the setting of formal languages: we show how to make lan-
guages simpler by decomposing them into intersections of smaller languages. This is
motivated by model-checking problems. For instance, the LTL model-checking problem
asks, given a linear temporal logic formula ϕ and a finite state machine M , whether
every execution of M satisfies ϕ. This problem is decidable, but has a high theoretical
complexity (PSPACE) with respect to the size of ϕ [Baier and Katoen, 2008]. If ϕ is too
long, it cannot be checked efficiently. This is where compositionality comes into play:
if we can decompose the specification language into an intersection of simple languages,
that is, decompose ϕ into a conjunction ϕ = ϕ1 ∧ϕ2 ∧ · · · ∧ϕk of small specifications, it
is sufficient to check whether all the ϕi are satisfied separately.

Our aim is to develop the theoretical foundations of the compositionality principle for
formal languages by investigating how to decompose into simpler parts one of the most
basic model of abstract machines: deterministic finite automata (DFAs). We say that
a DFA A is composite if its language can be decomposed into the intersection of the
languages of smaller DFAs. More precisely, we say that A is k-factor composite if there
exist k DFAs (Ai)1≤i≤k with less states than A such that L(A) =

⋂k
i=1 L(Ai). We study

the two following problems:

DFA Decomp

Given: DFA A.
Question: Is A composite?

DFA Bound-Decomp

Given: DFA A and integer k ∈ N.
Question: Is A k-factor composite?

The next example shows that decomposing DFAs can result in substantially smaller
machines.

Example. Consider Figure 1. We simulate the interactions between a system and
two clients by using finite words on the alphabet {r1, r2, g1, g2, i}: At each time step,

2

242 Decomposing Permutation Automata

0,0 1,0

0,1 1,1

A :

g1, g2, i r1, g2, i

r2, g1, i r1, r2

r1

g1

r1

g1

r2g2 r2g2

0,x 1,x

x,0 x,1

A1 :

A2 :

r2, i
g1, g2

g2, i
r1, r2

r1, i
g1, g2

g1, i
r1, r2

r1

g1

r2

g2

Figure 1: DFAs recognising specifications. Accepting states are drawn in black. The
DFAs A1 and A2 check that every request of the first, resp. second, client is eventually
granted, A checks both.

the system either receives a request from a client (r1, r2), grants the open requests of a
client (g1, g2), or stays idle (i). A basic property usually required is that every request is
eventually granted. This specification is recognised by the DFA A, which keeps track in
its state of the current open requests, and only accepts if none is open when the input
ends. Alternatively, this specification can be decomposed into the intersection of the
languages defined by the DFAs A1 and A2: each one checks that the requests of the
corresponding client are eventually granted. While in this precise example both ways
of defining the specification are comparable, the latter scales drastically better than the
former when the number of clients increases: Suppose that there are now n ∈ N clients.
In order to check that all the requests are granted with a single DFA, we need 2n states to
keep track of all possible combinations of open requests, which is impractical when n gets
too big. However, decomposing this specification into an intersection yields n DFAs of
size two, one for each client. Note that, while in this specific example the decomposition
is obvious, in general computing such a conjunctive form can be challenging: currently
the best known algorithm needs exponential space.

DFAs in hardware. Our considered problems are of great interest in hardware im-
plementations of finite state machines [Pedroni, 2013] where realizing large DFAs poses
a challenge [Gould et al., 2007]. In [Clarke et al., 1991] the authors describe a state
machine language for describing complex finite state hardware controllers, where the
compiled state tables can automatically be input into a temporal logic model checker. If
the control mechanism of the initial finite state machine can be split up into a conjunc-
tion of constraints, considering a decomposition instead could improve this work-flow
substantially. Decomposing a complex DFA A can lead to a smaller representation of
the DFA in total, as demonstrated in the previous example in Figure 1, and on top of
that the individual smaller DFAs Ai in the decomposition L(A) =

⋂k
i=1 L(Ai) can be

placed independently on a circuit board, as they do not have to interact with each other
and only need to read their common input from a global bus and signal acceptance as a
flag to the bus. This allows for a great flexibility in circuit designs, as huge DFAs can be

3

243

Decomp Bound-Decomp
DFAs EXPSPACE PSPACE

[Kupferman and Mosheiff, 2015]
Permutation DFAs NP/FPT PSPACE

Commutative NL NP-complete
permutation DFAs

Unary DFAs LOGSPACE [Jecker et al., 2020] LOGSPACE

Figure 2: Complexity of studied problems with containing classes, with our contribution
in bold.

broken down into smaller blocks which fit into niches giving space for inflexible modules
such as CPU cores.

Reversible DFAs. We focus our study on permutation DFAs, which are DFAs whose
transition monoids are groups: each letter induces a one-to-one map from the state set
into itself. These DFAs are also called reversible DFAs [Kunc and Okhotin, 2013, Pin,
1992]. Reversibility is stronger than determinism: this powerful property allows to
deterministically navigate back and forth between the steps of a computation. This
is particularly relevant in the study of the physics of computation, since irreversibility
causes energy dissipation [Landauer, 1961]. Remark that in the setting of DFAs, this
power results in a loss of expressiveness: contrary to more powerful models (for instance
Turing machines), reversible DFAs are less expressive than general DFAs.

Related work. The DFA Decomp problem was first introduced in 2013 by Kupferman
and Moscheiff [Kupferman and Mosheiff, 2015]. They proved that it is decidable in
EXPSPACE, but left open the exact complexity: the best known lower bound is hardness
for NL. They gave more efficient algorithms for restricted domains: a PSPACE algorithm
for permutation DFAs, and a PTIME algorithm for normal permutation DFAs, a class of
DFAs that contains all commutative permutation DFAs. Recently, the Decomp problem
was proved to be decidable in LOGSPACE for DFAs with a singleton alphabet [Jecker
et al., 2020]. The trade-off between number and size of factors was studied in [Netser,
2018], where automata showing extreme behavior are presented, i.e., DFAs that can either
be decomposed into a large number of small factors, or a small number of large factors.

Contribution. We expand the domain of instances over which the Decomp problem is
tractable. We focus on permutation DFAs, and we propose new techniques that improve
the known complexities. Our results, summarised by Figure 2, are presented as follows.

4

244 Decomposing Permutation Automata

Section 3: We give an NP algorithm for permutation DFAs, and we show that the
complexity is directly linked to the number of non-accepting states. This allows us to
obtain a fixed-parameter tractable algorithm with respect to the number of non-accepting
states (Theorem 1). Moreover, we prove that permutation DFAs with a prime number
of states cannot be decomposed (Theorem 2).

Section 4: We consider commutative permutation DFAs, where the Decomp problem
was already known to be tractable, and we lower the complexity from PTIME to NL,
and even LOGSPACE if the size of the alphabet is fixed (Theorem 3). While it is easy
to decide whether a commutative permutation DFA is composite, we show that rich and
complex behaviors still appear in this class: there exist families of composite DFAs that
require polynomially many factors to get a decomposition. More precisely, we construct
a family (Amn)m,n∈N of composite commutative permutation DFAs such that Amn is a DFA
of size nm that is (n− 1)m−1-factor composite but not (n− 1)m−1 − 1-factor composite
(Theorem 4). Note that, prior to this result, only families of composite DFAs with
sub-logarithmic width were known [Jecker et al., 2020].

Section 5: Finally, we study the Bound-Decomp problem. High widths are unde-
sirable for practical purposes: dealing with a huge number of small DFAs might end up
being more complex than dealing with a single DFA of moderate size. The Bound-

Decomp problem copes with this issue by limiting the number of factors allowed in the
decompositions. We show that this flexibility comes at a cost: somewhat surprisingly,
this problem is NP-complete for commutative permutation DFAs (Theorem 6), a setting
where the Decomp problem is easy. We also show that this problem is in PSPACE for
the general setting (Theorem 5), and in LOGSPACE for unary DFAs, i.e., with a singleton
alphabet (Theorem 7).

2 Definitions

We denote by N the set of non-negative integers {0, 1, 2, . . .}. For a word w = w1w2 . . . wn

with wi ∈ Σ for 1 ≤ i ≤ n, we denote by wR = wn . . . w2w1 the reverse of w. Moreover,
for every σ ∈ Σ, we denote by #σ(w) the number of times the letter σ appears in w. A
natural number n > 1 is called composite if it is the product of two smaller numbers,
otherwise we say that n is prime. Two integers m,n ∈ N are called co-prime if their
greatest common divisor is 1. We will use the following well known results [Hardy,
1929, Meher and Murty, 2013]:

5

245

Bertrand’s Postulate: For all n > 3 there is a prime number p satisfying the condi-
tion n < p < 2n− 2.

Bézout’s Identity: For every pair of integers m,n ∈ N, the set {λm− µn | λ, µ ∈ N}
contains exactly the multiples of the greatest common divisor of m and n.

Deterministic finite automata. A deterministic finite automaton (DFA hereafter)
is a 5-tuple A = 〈Σ, Q, qI , δ, F 〉, where Q is a finite set of states, Σ is a finite non-empty
alphabet, δ : Q×Σ→ Q is a transition function, qI ∈ Q is the initial state, and F ⊆ Q is
a set of accepting states. The states in Q \F are called rejecting states. We extend δ to
words in the expected way, thus δ : Q×Σ∗ → Q is defined recursively by δ(q, ε) = q and
δ(q, w1w2 · · ·wn) = δ(δ(q, w1w2 · · ·wn−1), wn). The run of A on a word w = w1 . . . wn is
the sequence of states s0, s1, . . . , sn such that s0 = qI and for each 1 ≤ i ≤ n it holds
that δ(si−1, wi) = si. Note that sn = δ(qI , w). The DFA A accepts w iff δ(qI , w) ∈ F .
Otherwise, A rejects w. The set of words accepted by A is denoted L(A) and is called
the language of A. A language accepted by some DFA is called a regular language.

We refer to the size of a DFA A, denoted |A|, as the number of states in A. A DFA A is
minimal if every DFA B such that L(B) = L(A) satisfies |B| ≥ |A|.

Composite DFAs. We call a DFA A composite if there exists a family (Bi)1≤i≤k of
DFAs with |Bi| < |A| for all 1 ≤ i ≤ k such that L(A) =

⋂
1≤i≤k L(Bi) and call the

family (Bi)1≤i≤k a decomposition of A. Note that, all Bi in the decomposition satisfy
|Bi| < |A| and L(A) ⊆ L(Bi). Such DFAs are called factors of A, and (Bi)1≤i≤k is also
called a k-factor decomposition of A. The width of A is the smallest k for which there is
a k-factor decomposition of A, and we say that A is k-factor composite iff width(A) ≤ k.
We call a DFA A prime if it is not composite. We call a DFA A trim if all of its states
are accessible from the initial state. As every non-trim DFA A is composite, we assume
all given DFAs to be trim in the following.

We call a DFA a permutation DFA if for each letter σ ∈ Σ, the function mapping each
state q to the state δ(q, σ) is a bijection. For permutation DFAs the transition monoid
is a group. Further, we call a DFA A = 〈Σ, Q, qI , δ, F 〉 a commutative DFA if δ(q, uv) =

δ(q, vu) for every state q and every pair of words u, v ∈ Σ∗. In the next sections we discuss
the problem of being composite for the classes of permutation DFA, and commutative
permutation DFAs.

6

246 Decomposing Permutation Automata

3 Decompositions of Permutation DFAs

In this section, we study permutation DFAs. Our main contribution is an algorithm for
the Decomp problem that is FPT with respect to the number of rejecting states:

Theorem 1. The Decomp problem for permutation DFAs is in NP. It is in FPT with
parameter k, being the number of rejecting states of DFA A, solvable in time O(2kk2 ·|A|).

We prove Theorem 1 by introducing the notion of orbit-DFAs: an orbit-DFA AU of a
DFA A is the DFA obtained by fixing a set of states U of A as the initial state, and
letting the transition function of A act over it (thus the states of AU are subsets of the
state space of A). We prove three key results:

• A permutation DFA is composite if and only if it can be decomposed into its orbit-
DFAs (Corollary 1);

• A permutation DFA A can be decomposed into its orbit-DFAs if and only if for
each of its rejecting states q, there exists an orbit-DFA AU smaller than A that
covers q, that is, one of the states of AU contains q and no accepting states of A
(Lemma 3);

• Given a permutation DFA A and a rejecting state q, we can determine the existence
of an orbit-DFA covering q in non-deterministic time O(|A|2), and in deterministic
time O(2kk · |A|), where k is the number of rejecting states of A (Lemma 4,
Algorithm 1).

These results directly imply Theorem 1. We also apply them to show that the Decomp

problem is trivial for permutation DFAs with a prime number of states.

Theorem 2. Let A be a permutation DFA with at least one accepting state and one
rejecting state. If the number of states of A is prime, then A is prime.

3.1 Proof of Theorem 1

Consider a DFA A = 〈Σ, Q, qI , δ, F 〉. We extend δ to subsets U ⊆ Q in the expected
way:

δ(U,w) = {q ∈ Q | q = δ(p, w) for some p ∈ U} for every word w ∈ Σ∗.

7

247

1
2

3

4
5

6
A :

b

b
a

a

a

a a

a
b b

234

456

126

135

a

a

a a

b

bb123

156 345

246

a

a

aa

b

b b

14 36

25b

a

a

a

b

23561245

1346 b

a

a

a

b

Figure 3: A DFA A together with some of its orbit-DFAs. Accepting states are depicted
in black, an orbit-DFA can be obtained by setting a subset containing a 1 as an initial
state. For instance the orbit-DFAs A{1,2,3} and A{1,5,6} form a decomposition of A.

The orbit of U is the collection CU = {δ(U,w) ⊆ Q | w ∈ Σ∗} of subsets of Q that can
be reached from U by the action of δ. If the subset U ⊆ Q contains the initial state qI
of A, we define the orbit-DFA AU = 〈Σ, CU , U, δ, C ′〉, where the state space CU is the orbit
of U , and the set C ′ of accepting states is composed of the sets U ′ ∈ CU that contain at
least one of the accepting states of A : U ′ ∩ F 6= ∅. Note that AU can alternatively be
defined as the standard subset construction starting with the set U ⊆ Q as initial state.
The definition of the accepting states guarantees that L(A) ⊆ L(AU):

Proposition 1. Every orbit-DFA AU of a DFA A satisfies L(A) ⊆ L(AU).

Proof. For every word w accepted by A, the state δ(qI , w) that A visits after reading w
is accepting. Moreover, as the initial state qI of A is in U , the state δ(U,w) that AU
visits after reading w contains the state δ(qI , w) ∈ F . Therefore, we get that δ(qI , w) ∈
δ(U,w)∩F , hence δ(U,w) is an accepting state of AU , which proves that w ∈ L(AU).

Example. Let us detail the orbits of the DFA A depicted in Figure 3. This DFA
contains six states, and generates the following non-trivial orbits on its subsets of states:

• The 15 subsets of size 2 are split into two orbits: one of size 3, and one of size 12;

• The 20 subsets of size 3 are split into three orbits: two of size 4, and one of size 12;

• The 15 subsets of size 4 are split into two orbits, one of size 3, and one of size 12.

Figure 3 illustrates the four orbits smaller than |A|: they induce seven orbit-DFAs,
obtained by setting as initial state one of the depicted subsets containing the initial
state 1 of A.

In order to prove that a DFA is composite if and only if it can be decomposed into its
orbit-DFAs, we prove that every factor B of a permutation DFA A can be turned into an

8

248 Decomposing Permutation Automata

orbit-DFA AU that is also a factor of A, and satisfies L(AU) ⊆ L(B). Our proof is based
on a known result stating that factors can be turned into permutation DFAs:

Lemma 1 ([Kupferman and Mosheiff, 2015, Theorem 7.4]). Let A be a permutation
DFA. For every factor B of A, there exists a permutation DFA C satisfying |C| ≤ |B| and
L(A) ⊆ L(C) ⊆ L(B).

We strengthen this result by showing how to transform factors into orbit-DFAs:

Lemma 2. Let A be a permutation DFA. For every factor B of A, there exists an orbit-
DFA AU of A satisfying |AU | ≤ |B| and L(A) ⊆ L(AU) ⊆ L(B).

Proof. Let A = 〈Σ, Q, qI , δ, F 〉 be a permutation DFA, and let B be a factor of A. By
Lemma 1, there exists a permutation DFA B′ = 〈Σ, S, sI , η, G〉 satisfying |B′| ≤ |B| and
L(A) ⊆ L(B′) ⊆ L(B). We build, based on B′, an orbit-DFA AU of A satisfying the
statement.

We say that a state q ∈ Q of A is linked to a state s ∈ S of B′, denoted q ∼ s, if there
exists a word u ∈ Σ∗ satisfying δ(qI , u) = q and η(sI , u) = s. Let f : S → 2Q be the
function mapping every state s ∈ S to the set f(s) ⊆ Q containing all the states q ∈ Q
that are linked to s (i.e. satisfying q ∼ s). We set U = f(sI). In particular, the initial
state qI of A is in U since δ(qI , ε) = qI and η(sI , ε) = sI . We show that the orbit-DFA AU
satisfies the desired conditions: |AU | ≤ |B′| and L(A) ⊆ L(AU) ⊆ L(B′).

First, we show that |AU | ≤ |B′| by proving that the function f defined earlier maps S
surjectively into the orbit of U , which is the state space of AU . Since both A and B′ are
permutation DFAs, we get that for all q ∈ Q, s ∈ S and a ∈ Σ, then q ∼ s if and only
if δ(q, a) ∼ η(s, a) holds.1 Therefore, for every word v ∈ Σ∗, f(η(sI , v)) = δ(f(sI), v) =

δ(U, v). This shows that, as required, the image of the function f is the orbit of U , and
f is surjective.

To conclude, we show that L(A) ⊆ L(AU) ⊆ L(B′). Proposition 1 immediately implies
that L(A) ⊆ L(AU). Therefore it is enough to show that L(AU) ⊆ L(B′). Let v ∈ L(AU).
By definition of an orbit-DFA, this means that the set δ(U, v) contains an accepting
state qF of A. Since, as stated earlier, f(η(sI , v)) = δ(U, v), this implies (by definition of
the function f) that the accepting state qF of A is linked to η(sI , v), i.e., there exists a
word v′ ∈ Σ∗ such that δ(qI , v′) = qF and η(sI , v

′) = η(sI , v). Then δ(qI , v′) = qF implies
that v′ is in the language of A. Moreover, since L(A) ⊆ L(B′) by supposition, v′ is
also accepted by B′, i.e., η(sI , v

′) is an accepting state of B′. Therefore, since η(qI , v
′) =

1Remark that for general DFAs we only get that q ∼ s implies δ(q, a) ∼ η(s, a) from the determinism.
It is the backward determinism of the permutation DFAs A and B′ that gives us the reverse implication.

9

249

η(qI , v), the word v is also in the language of B′. This shows that L(AU) ⊆ L(B′), which
concludes the proof.

As an immediate corollary, every decomposition of a permutation DFA can be trans-
formed, factor after factor, into a decomposition into orbit-DFAs.

Corollary 1. A permutation DFA is composite if and only if it can be decomposed into
its orbit-DFAs.

Orbit cover. Given a rejecting state q ∈ Q \ F of A, we say that the orbit-DFA AU
covers q if |AU | < |A|, and AU contains a rejecting state U ′ ⊆ Q that contains q.
Remember that, by definition, this means that U ′ contains no accepting state of A, i.e.,
U ′ ∩ F = ∅. We show that permutation DFAs that can be decomposed into their orbit-
DFAs are characterized by the existence of orbit-DFAs covering each of their rejecting
states.

Lemma 3. A permutation DFA A is decomposable into its orbit-DFAs if and only if
every rejecting state of A is covered by an orbit-DFA A′ of A satisfying |A′| < |A|.

Proof. Let A = 〈Σ, Q, qI , δ, F 〉 be a permutation DFA. We prove both implications.

Suppose that A can be decomposed into its orbit-DFAs (AUi)1≤i≤k, and let q ∈ Q \F be
a rejecting state of A. We show that q is covered by every orbit-DFA AUi that rejects
a word w ∈ Σ∗ satisfying δ(qI , w) = q. Formally, let w ∈ Σ∗ be a word satisfying
δ(qI , w) = q. Then w /∈ L(A) =

⋂n
i=1 L(AUi), hence there exists 1 ≤ i ≤ n such that

w /∈ L(AUi). Let U ′ ⊆ Q be the state visited by AUi after reading w. Then, by applying
the definition of an orbit-DFA, we get that q ∈ U ′ since δ(qI , w) = q, and U ′ ∩ F = ∅
since U ′ is a rejecting state of AUi (as w /∈ L(AUi)). Therefore, AUi covers q. Moreover,
|AUi | < |A| since AUi is a factor of A.

Conversely, let us fix an enumeration q1, q2, . . . , qm of the rejecting states of A, and
suppose that for all 1 ≤ i ≤ m there is an orbit-DFA AUi of A that covers qi and
satisfies |AUi | < |A|. Let (Ui.j)1≤j≤ni be an enumeration of the subsets in the orbit
of Ui that contain the initial state qI of A. We conclude the proof by showing that
S = {AUi.j | 1 ≤ i ≤ m, 1 ≤ j ≤ ni} is a decomposition of A. Note that we immediately
get |AUi.j | = |AUi| < |A| for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni. Moreover, Proposition 1
implies L(A) ⊆ ⋂

A′∈S L(A′). To complete the proof, we show that
⋂
A′∈S L(A′) ⊆ L(A).

Let w ∈ Σ∗ be a word rejected by A. To prove the desired inclusion, we show that there
is a DFA A′ ∈ S that rejects w. Since w /∈ L(A), the run of A on w starting from the

10

250 Decomposing Permutation Automata

Function isComposite(A = 〈Σ, Q, qI , δ, F 〉 : permutation DFA)
foreach p ∈ Q \ F do

guess U with {p} ⊆ U ⊆ Q \ F /* guess rejecting state U of some
orbit-DFA, such that U contains rejecting state p of A */
if not cover(A, p, U) then return False

return True

Function cover(A = 〈Σ, Q, qI , δ, F 〉 : permutation DFA, p ∈ Q \ F , U ⊆ Q \ F)
Cold
U = ∅
CU := {U}
while CU 6= Cold

U and |CU | < |Q| do
Cold
U := CU
CU := CU ∪ {δ(S, σ) | S ∈ CU , σ ∈ Σ}

if |CU | ≥ |Q| then return False /* check that orbit-DFA is factor */
foreach S ∈ CU do

if qI ∈ S then return True /* check that U is reachable from the
inital state of the orbit-DFA */

return False
Algorithm 1: NP-algorithm for the Decomp problem for permutation DFAs.

initial state ends in a rejecting state qi, for some 1 ≤ i ≤ m. By supposition the orbit-
DFA AUi covers qi, hence the orbit of Ui contains a set U ′ ⊆ Q that contains qi and no
accepting state. Note that there is no guarantee that AUi rejects w: while the set δ(Ui, w)

contains qi, it is not necessarily equal to U ′, and might contain accepting states. However,
as A is a permutation DFA, we can reverse all of the transitions of A to get a path labeled
by the reverse of w that starts from U ′ (that contains qi), and ends in one of the sets
Ui.j (that contains qI).2 Therefore, by reversing this path back to normal, we get that
δ(Ui.j, w) = U ′, hence the orbit-DFA AUi.j ∈ S rejects w. Therefore, every word rejected
by A is rejected by an orbit-DFA A′ ∈ S, which shows that

⋂
A′∈S L(A′) ⊆ L(A).

This powerful lemma allows us to easily determine whether a permutation DFA is compos-
ite if we know its orbits. For instance, the DFA A depicted in Figure 3 is composite since
the orbit-DFA A{1,2,3} covers its five rejecting states. Following the proof of Lemma 3,
we get that (A{1,2,3},A{1,5,6}) is a decomposition of A, and so is (A{1,2,6},A{1,3,5}).

To conclude, we give an algorithm checking if a rejecting state is covered by an orbit-
DFA. The whole NP-algorithm for checking whether a permutation DFA is composite is
summarized in Algorithm 1.

Lemma 4. Given a permutation DFA A and a rejecting state q, we can determine the
existence of an orbit-DFA that covers q in nondeterministic time O(k · |A|2), and in
deterministic time O(2kk · |A|2), where k is the number of rejecting states of A.

2Remark that, if A is not a permutation DFA, then some states might not have incoming transitions
for every letter. Thus, the reversal of w might not be defined.

11

251

Proof. We can decide in NP whether there exists an orbit-DFA AU of A that covers p:
we non-deterministically guess among the set of rejecting states of A a subset U ′ con-
taining p. Then, we check in polynomial time that the orbit of U ′ is smaller than |A|.
This property can be checked in time O(|A|2). Since A is trim, in the orbit of U ′ there
is a set U containing the initial state of A. Moreover, since A is a permutation DFA, U
and U ′ induce the same orbit. Hence, p is covered by the orbit-DFA AU . Finally, we can
make this algorithm deterministic by searching through the 2k possible subsets U ′ of the
set of rejecting states of A.

3.2 Proof of Theorem 2

Thanks to the notion of orbit DFAs we are able to prove that a permutation DFA which
has a prime number of states with at least one accepting and one rejecting, is prime.

Proof. Let A = 〈Σ, Q, qI , δ, F 〉 be a trim permutation DFA with a state space Q of prime
size that contains at least one accepting state and one rejecting state. We show that the
only orbit of A smaller than |Q| is the trivial orbit {Q}. This implies that A cannot be
decomposed into its orbit-DFAs, which proves that A is prime by Lemma 2.

Let us consider a strict subset U1 6= ∅ of the state space Q, together with its orbit
CU1 = {U1, U2, . . . , Um}. We prove that m ≥ |Q|. First, we show that all the Ui have the
same size: since Ui is an element of the orbit of U1, there exists a word ui ∈ Σ∗ satisfying
δ(U1, ui) = Ui, and, as every word in Σ∗ induces via δ a permutation on the state space,
|Ui| = |δ(U1, ui)| = |U1|. Second, for every q ∈ Q, we define the multiplicity of q in CU1

as the number λ(q) ∈ N of distinct elements of CU1 containing the state q. We show that
all the states q have the same multiplicity: since A is trim, there exists a word uq ∈ Σ∗

satisfying δ(qI , uq) = q, hence uq induces via δ a bijection between the elements of CU1

containing qI and those containing q, and λ(q) = λ(δ(qI , uq)) = λ(qI). By combining
these results, we obtain m · |U1| = Σm

i=1|Ui| = Σq∈Qλ(q) = λ(qI) · |Q|. Therefore, as |Q|
is prime by supposition, either m or |U1| is divisible by |Q|. However, U1 (Q, hence
|U1| < |Q|, which shows that m is divisible by |Q|. In particular, we get m ≥ |Q|, which
concludes the proof.

4 Decompositions of Commutative Permutation DFAs

We now study commutative permutation DFAs: a DFA A = 〈Σ, Q, qI , δ, F 〉 is commu-
tative if δ(q, uv) = δ(q, vu) for every state q and every pair of words u, v ∈ Σ∗. Our

12

252 Decomposing Permutation Automata

main contribution is an NL algorithm for the Decomp problem for commutative per-
mutation DFAs. Moreover, we show that the complexity goes down to LOGSPACE for
alphabets of fixed size.

Theorem 3. The Decomp problem for commutative permutation DFAs is in NL, and
in LOGSPACE when the size of the alphabet is fixed.

The proof of Theorem 3 is based on the notion of covering word : a word w ∈ Σ∗ covers
a rejecting state q of a DFA A = 〈Σ, Q, qI , δ, F 〉 if δ(q, w) 6= q, and for every λ ∈ N, the
state δ(q, wλ) is rejecting. We prove two related key results:

• A commutative permutation DFA is composite if and only if each of its rejecting
states is covered by a word (Lemma 5).

• We can decide in NL (LOGSPACE when the size of the alphabet is fixed) if a given
rejecting state of a DFA is covered by a word (Lemma 6, and Algorithm 2).

These results immediately imply Theorem 3. We conclude this section by showing an
upper bound on the width of permutation DFAs and constructing a family of DFAs of
polynomial width.

Theorem 4. The width of every composite permutation DFA is smaller than its size.
Moreover, for all m,n ∈ N such that n is prime, there exists a commutative permuta-
tion DFA of size nm and width (n− 1)m−1.

We show that the width of a commutative permutation DFA is bounded by its number of
rejecting states (Lemma 5). Then, for each m,n ∈ N with n prime, we define a DFA Amn
of size nm that can be decomposed into (n− 1)m−1 factors (Proposition 3), but not into
(n− 1)m−1 − 1 (Proposition 4).

4.1 Proof of Theorem 3

The proof is based on the following key property of commutative permutation DFAs:
In a permutation DFA A, every input word acts as a permutation on the set of states,
generating disjoint cycles, and if A is commutative these cycles form an orbit.

Proposition 2. Let A = 〈Σ, Q, qI , δ, F 〉 be a commutative permutation DFA. For all
u ∈ Σ∗, the sets ({δ(q, uλ) | λ ∈ N})q∈Q partition Q and form an orbit of A.

13

253

Proof. Let A = 〈Σ, Q, qI , δ, F 〉 be a commutative permutation DFA. Given u ∈ Σ∗ and
q ∈ Q, the sequence of states δ(q, u), δ(q, u2), . . . , δ(q, ui) visited by applying δ on iter-
ations of u eventually repeats i.e. δ(q, ux) = δ(q, uy) = p for some x, y ∈ N and p ∈ Q.
Since A is a permutation DFA, it is both forward and backward deterministic, thus the
set of visited states {δ(q, uλ) | λ ∈ N} is a cycle that contain both p and q. The collection
({δ(q, uλ) | λ ∈ N})q∈Q forms an orbit of A by commutativity. Formally, for all u, v ∈ Σ∗

and every q ∈ Q, we have: δ({δ(q, uλ)|λ ∈ N}, v) = {δ(q, uλv)|λ ∈ N} = {δ(q, vuλ)|λ ∈
N} = {δ(δ(q, v), uλ)|λ ∈ N}.

We proved with Corollary 1 and Lemma 3 that a permutation DFA is composite if and
only if each of its rejecting states is covered by an orbit-DFA. We now reinforce this result
for commutative permutation DFAs. As stated before, we say that a word u ∈ Σ∗ covers
a rejecting state q of a DFA A = 〈Σ, Q, qI , δ, F 〉 if u induces from q a non-trivial cycle
composed of rejecting states: δ(q, u) 6= q, and δ(q, uλ) is rejecting for all λ ∈ N. Note
that the collection ({δ(q, uλ) | λ ∈ N})q∈Q forms an orbit of A by Proposition 2. We
show that we can determine if A is composite by looking for words covering its rejecting
states.

Lemma 5. For every k ∈ N, a commutative permutation DFA A is k-factor composite
if and only if there exist k words that, together, cover all the rejecting states of A.

Proof. Let A = 〈Σ, Q, qI , δ, F 〉 be a commutative permutation DFA and k ∈ N. We
start by constructing k factors based on k covering words. Suppose that there exist
k words u1, u2, . . . , uk such that every rejecting state q ∈ Q \ F is covered by one of
the ui. Note that all the ui covering at least one state q do not act as the identity on Q
(since δ(q, ui) 6= q), therefore we suppose, without loss of generality, that none of the ui
acts as the identity on Q. For every 1 ≤ i ≤ k, let Ui = {δ(qI , uλi) | λ ∈ N}. We
show that (AUi)1≤i≤k is a decomposition of A. As none of the ui acts as the identity
on Q, Proposition 2 implies that every AUi is smaller than A. Moreover, Proposition 1
implies that L(A) ⊆ L(AUi), hence L(A) ⊆ ⋂k

j=1 L(AUj). To conclude, we show that⋂k
j=1 L(AUj) ⊆ L(A). Let u /∈ L(A). By supposition, there exists 1 ≤ i ≤ k such that

ui covers δ(qI , u). As a consequence, the set

δ(Ui, u) = δ({δ(qI , uλi) | λ ∈ N}, u) = {δ(qI , uλi u) | λ ∈ N} = {δ(qI , uuλi) | λ ∈ N}
= {δ(δ(qI , u), uλi) | λ ∈ N}

contains no accepting state of A, hence it is a rejecting state of AUi . As a consequence,
we get u /∈ L(AUi) ⊇ ⋂k

j=1 L(AUj), which proves that
⋂k
j=1 L(AUj) ⊆ L(A).

We now construct k covering words based on k factors. Suppose that A has a k-factor

14

254 Decomposing Permutation Automata

decomposition (Bi)1≤i≤k. Lemma 1 directly implies that this decomposition can be trans-
formed into a decomposition (Ci)1≤i≤k of A, where Ci = 〈Σ, Si, siI , ηi, Gi〉 are permuta-
tion DFAs. For every 1 ≤ i ≤ k, we build a word ui based on Ci, we prove that every
rejecting state of A is covered by one of these ui. Consider 1 ≤ i ≤ k. Since Ci is a factor
of A, in particular |Ci| < |A|, hence there exist two input words vi, wi ∈ Σ∗ such that A
reaches different states on vi and wi, but Ci reaches the same state: δ(qI , vi) 6= δ(qI , wi)

but ηi(siI , vi) = ηi(s
i
I , wi). Note that both A and Ci are permutation DFAs, hence there

exists a power vκii of vi that induces the identity function on both state spaces Q and Si.
We set ui = wiv

κi−1
i , which guarantees that:

δ(qI , ui) = δ(δ(qI , wi), v
κi−1
i) 6= δ(δ(qI , vi), v

κi−1
i) = δ(qI , v

κi
i) = qI ;

ηi(s
i
I , ui) = ηi(ηi(s

i
I , wi), v

κi−1
i) = ηi(ηi(s

i
I , vi), v

κi−1
i) = ηi(s

i
I , v

κi
i) = siI .

In other words, ui moves the initial state qI of A, but fixes the initial state siI of Ci.

We now prove that each rejecting state of A is covered by one of the ui. Let q ∈ Q \ F
be a rejecting state of A. Since A is trim, there exists a word uq ∈ Σ∗ such that
δ(qI , uq) = q. Then, as uq /∈ L(A) and (Ci)1≤i≤k is a decomposition of A, there exists
1 ≤ i ≤ k such that uq /∈ L(Ci). We show that the word ui covers the rejecting state q:
we prove that δ(q, ui) 6= q, and that δ(q, uλi) is rejecting for every λ ∈ N. First, since A
is a commutative permutation DFA and ui moves qI , we get that δ(q, ui) = δ(qI , uqui) =

δ(qI , uiuq) 6= δ(qI , uq) = q. Moreover, for all λ ∈ N, Since uq /∈ L(Ci) by supposition
and ui fixes siI , the DFA Ci also rejects the word uλi uq. Therefore, as L(A) ⊆ L(Ci), we
finally get that δ(q, uλi) = δ(qI , uqu

λ
i) = δ(qI , u

λ
i uq) is a rejecting state of A.

By Lemma 5, to conclude the proof of Theorem 3 we show that we can decide in NL
(and in LOGSPACE when the size of the alphabet is fixed) whether a given rejecting
state of a DFA is covered by a word (since in the Decomp problem we can afford to
pick a covering word for each state). As we consider commutative permutation DFAs,
we can represent a covering word by the number of occurrences of each letter, which are
all bounded by |Q|.

Lemma 6. Let A be a commutative permutation DFA and p a rejecting state.

1. We can determine the existence of a word covering p in space O(|Σ| · log |Q|);

2. We can determine the existence of a word covering p in NL;

Proof of Item 1. Let A = 〈Σ, Q, qI , δ, F 〉 be a commutative permutation DFA with al-
phabet Σ = {σ1, σ2, . . . , σm}. Note that (*) for every pair of states p, q ∈ Q, there exists
a word wp,q = σi11 σ

i2
2 . . . σ

im
m ∈ Σ∗ with i1 + i2 + · · · + im < |Q| such that δ(p, wp,q) = q.

15

255

Further, note that for commutative permutation DFAs, δ(p, w|Q|) = p for every state p
and word w ∈ Σ∗. Let p ∈ Q \F be a rejecting state of A. We can decide in logarithmic
space whether there exists a word covering p as follows. Pick a state q ∈ Q with p 6= q

and determine wp,q by iterating over all |Q||Σ| words of the form described in (*) and
check whether δ(p, wp,q) = q. Due to observation (*), we can represent each potential
candidate for wp,q with |Σ| · log(|Q|) bits.

Next, we have to ensure that all states in the cycle induced by wp,q on p are rejecting, i.e.,
we have to check that δ(p, wλp,q) /∈ F for all λ ≤ |Q|. Therefore, we use two pointers, one
for the state p and one for the image of p under wλp,q where λ denotes the current iteration
step. As long as δ(p, wλp,q) is rejecting and 6= p we continue to compute δ(p, wλ+1

p,q). If
δ(p, wλp,q) is accepting, we abort the computation and repeat the computation with some
other state q′ instead of q. If we find δ(p, wλp,q) = p, we confirmed the existence of a
word covering p. The current iteration step over the states p and q can be stored via
two pointers. Note that the iteration step λ does not have to be stored due to the
permutation property which ensures us to encounter p again, finally.

Proof of Item 2. We adapt the algorithm presented in the proof of Item 1, and use the
terminology introduced there. We adapt it in the sense that we do not store the word wp,q
but instead guess it again every time we want to apply it to some state δ(p, wλp,q). There-
fore, we store an extra copy of pointers to the states p and q. We guess wp,qλ applied
in iteration step λ by successively guessing at most |Q| letters σ ∈ Σ and applying σ to
both states p and the currently investigated state δ(p, wp,q1wp,q2 . . . wp,qλ−1

). The counter
on the number of guessed letters can be stored in log |Q| bits. We check that we actually
reached δ(p, wλp,q1) after guessing some wp,qλ by checking whether the state p is mapped
to q. Note that the words wp,qi that are guessed in different iteration steps i of λ might
differ, but they are all equivalent in the sense that they impose the same transitions
in the cycle induced by wp,q1 on p since A is a commutative permutation DFA. As the
representation of wp,q was the only part using super-logarithmic space in the algorithm
described in Lemma 6, the claim follows. Both variants of the algorithm (deterministic
and non-deterministic) are depicted in Algorithm 2.

4.2 Proof of Theorem 4

As a direct consequence of Lemma 5, the width of every commutative permutation
DFA A is bounded by the number of rejecting states of A, hence, it is smaller than |A|.
To conclude the proof of Theorem 4, for allm,n ∈ N with n prime, we define a DFAAmn of
size nm and width (n− 1)m−1 on the alphabet Σ = {a1, a2, . . . , am}. For all ` ∈ N, let [`]

16

256 Decomposing Permutation Automata

Function isComposite(A = 〈Σ, Q, qI , δ, F 〉 : commutative permutation DFA)
foreach p ∈ Q \ F do

cover_found:=False
foreach q ∈ Q \ F with q 6= p do

if cover(A, p, q) then cover_found:=True /* covering p with wp,q */

if not cover_found then return False /* no cover found for p */

return True /* all state p are covered */

Function cover(A = 〈Σ, Q, qI , δ, F 〉 : commutative permutation DFA, p, q ∈ Q \ F)
s := q
while s 6= p do /* eventually s = p A is a permuation DFA */

s := mimic(p, q, s) /* thus s := δ(s, wp,q) */
if s ∈ F then return False /* contradiction of covering */

return True /* encountered p again without hitting state in F */

Function mimic(A = 〈Σ, Q, qI , δ, F 〉 : commutative permutation DFA,
p, q, s ∈ Q \ F)

Assumption: |Σ| is fixed, let Σ = {σ1, σ2, . . . , σm}
foreach 1 ≤ x1 + · · ·+ x|Σ| ≤ |Q| do /* possible since |Σ| is fixed */

if δ(p, σx11 σ
x2
2 . . . σxmm) = q then return δ(s, σx11 σ

x2
2 . . . σxmm)

Function mimic(A = 〈Σ, Q, qI , δ, F 〉 : commutative permutation DFA,
p, q, s ∈ Q \ F)

Assumption: this algorithm is allowed to use non-determinism
p′ := p, ` := 0
while p′ 6= q and ` < |Q| do

guess σ ∈ Σ /* iteratively contruct wp,q */
p′ := δ(p′, σ), s := δ(s, σ), ` := `+ 1

if ` = |Q| then return error else return s /* check q = δ(p, wp,q) */

Algorithm 2: Deterministic and non-deterministic version of the algorithm solving
the Decomp problem for commutative permutation DFAs.

17

257

A2
5 :

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a1

a2

a2

a2

a2

a2

a2

a2

a2

a2

a2
A2

5.1 :
a1 a1 a1 a1

a1

A2
5.2 :

a1 a1 a1 a1

a1

A2
5.3 :

a1 a1 a1 a1

a1

A2
5.4 :

a1, a2 a1, a2 a1, a2 a1, a2

a1, a2

a2

a2 a2 a2 a2

a2 a2

a2 a2 a2

a2 a2 a2

a2 a2

Figure 4: The DFA A2
5 recognising the language L2

5, together with its decomposition into
four non-trivial orbit-DFAs. Final states are depicted in black.

denote the equivalence class of ` modulo n. Let Lmn ⊆ Σ∗ be the language composed of
the words w such that for at least one letter ai ∈ Σ the number #ai(w) of ai in w is a
multiple of n, and for at least one (other) letter aj ∈ Σ, the number #aj(w) of aj in w
is not a multiple of n:

Lmn = {w ∈ Σ∗ | [#ai(w)] = [0] and [#aj(w)] 6= [0] for some 1 ≤ i, j ≤ m}.

The language Lmn is recognised by a DFA Amn of size nm that keeps track of the value mod-
ulo n of the number of each ai already processed. The state space ofAmn is the direct prod-
uct (Z/nZ)m of m copies of the cyclic group Z/nZ = ([0], [1], . . . , [n−1]); the initial state
is ([0], [0], . . . , [0]); the final states are the ones containing at least one component equal
to [0] and one component distinct from [0]; and the transition function increments the
ith component when an ai is read: δ(([j1], [j2], . . . , [jm]), ai) = ([j1], [j2], . . . , [ji−1], [ji+1],

[ji+1], . . . , [jm]). Figure 4 illustrates the particular case n = 5 and m = 2.

To prove that the width of Amn is (n − 1)m−1, we first show that the (n − 1)m−1 words
{a1a

λ2
2 . . . aλmm | 1 ≤ λi ≤ n− 1} cover all the rejecting states, thus by Lemma 5:

Proposition 3. The DFA Amn is (n− 1)m−1-factor composite.

Proof. For every m − 1 tuple φ = (j2, j3, . . . , jm) ∈ {1, 2, . . . , n − 1}m−1, let uφ be the
word

uφ = a1a
j2
2 a

j3
3 a

j4
4 . . . a

jm
m ∈ Σ∗.

Note that there are (n − 1)m−1 distinct words uφ. We show that every rejecting state
of Amn is covered by one of the uφ, which proves, by Lemma 5, that Amn is (n − 1)m−1-
composite.

18

258 Decomposing Permutation Automata

Let q be a rejecting state of Amn . Remember that the rejecting states of Amn are precisely
those for which either (�) all the components are [0], or (F) none of the component is [0].
We consider both possibilities.

(�) If q = ([0], [0], . . . , [0]) we show that every uφ = a1a
j2
2 a

j3
3 . . . a

jm
m covers q: for all λ ∈ N,

δ(q, uλφ) = δ(([0], [0], . . . , [0]), (a1a
j2
2 a

j3
3 a

j4
4 . . . a

jm
m)λ)

= ([λ], [λj2], [λj3], [λj4], . . . , [λjm]).

Therefore, either [λ] = [0] and all the components of δ(q, uλφ) are [0], or [λ] 6= [0] and
none of the components of δ(q, uλφ) are [0] (since n is prime and 1 < ji < n− 1). In both
cases, δ(q, uλφ) is rejecting. This proves that uφ covers q.

(F) If q = ([k1], [k2], . . . , [km]) such that none of the [ki] is equal to [0], we build a
specific uφ that covers q. Since [k1] 6= 0 and n is prime, there exists µ ∈ N satisfying
[µ · k1] = [1]. Note that this implies that [µ] 6= [0], hence for every 2 ≤ i ≤ m we get
that [µki] = [ji] for some 1 ≤ ji ≤ n− 1. Let φ = (j2, j3, . . . , jm). Then for every λ ∈ N

δ(q, uλφ) = δ(([k1], [k2], . . . , [km]), (a1a
j2
2 a

j3
3 a

j4
4 . . . a

jm
m)λ)

= ([k1 + λ], [k2 + λj2], [k3 + λj3], [k4 + λj4], . . . , [km + λkm])

= ([k1 + λµk1], [k2 + λµk2], [k3 + λµk3], [k4 + λµk4], . . . , [km + λµkm])

= ([(1 + λµ)k1], [(1 + λµ)k2], [(1 + λµ)k3], [(1 + λµ)k4], . . . , [(1 + λµ)km]).

Remember that, by supposition, [ki] 6= [0] for all 1 ≤ i ≤ m. Therefore, either it holds
that [λµ+1] = [0] and all the components of δ(q, uλφ) are [0], or [λµ+1] 6= [0] and none of
the components of δ(q, uλφ) are [0] (since n is prime). In both cases, δ(q, uλφ) is rejecting.
This proves that uφ covers q.

Then, we prove that there exist no word that covers two states among the (n − 1)m−1

rejecting states {([1], [k2], [k3], . . . , [km]) | 1 ≤ ki ≤ m − 1}. Therefore, we need at least
(n− 1)m−1 words to cover all of the states, thus by Lemma 5:

Proposition 4. The DFA Amn is not ((n− 1)m−1 − 1)-factor composite.

Proof. For every m − 1 tuple φ = (k2, k3, . . . , km) ∈ {1, 2, . . . , n − 1}m−1, let qφ denote
the rejecting state ([1], [k2], [k3], . . . , [km]) of Amn . Note that there are (n − 1)m−1 dis-
tinct qφ. We show that there exists no word that covers two different qφ, which proves,
by Lemma 5, that Amn is not ((n− 1)m−1 − 1)-composite.

Let φ = (k2, k3, . . . , km), ψ = (`2, `3, . . . , `m) ∈ {1, 2, . . . , n − 1}m−1, and let u ∈ Σ∗ be
a word that covers both qφ and qψ. We show that this implies φ = ψ. Since Amn is

19

259

commutative, we can suppose without loss of generality that u = aj11 a
j2
2 . . . a

jm
m . Let

λ ∈ N satisfying [λj1] = [−1]. Then,

δ(qφ, u
λ) = ([0], [k2 + λj2], [k3 + λj3], [k4 + λj4], . . . , [km + λjm])

δ(qψ, u
λ) = ([0], [`2 + λj2], [`3 + λj3], [`4 + λj4], . . . , [`m + λjm]).

Since u covers both qφ and qψ by supposition, both δ(qφ, uλ) and δ(qψ, uλ) are rejecting
states of Amn . Since the first component of both of these states is [0], this implies
that all of their components are [0]. In other words, for every 2 ≤ i ≤ m we get
[ki + λji] = [0] = [`i + λji], hence ki = `i. This proves that φ = ψ.

5 Bounded Decomposition

We finally study the Bound-Decomp problem: Given a DFA A and an integer k ∈ N

encoded in unary, determine whether A is decomposable into k factors. For the general
setting, we show that the problem is in PSPACE: it can be solved by non-deterministically
guessing k factors, and checking that they form a decomposition.

Theorem 5. The Bound-Decomp problem is in PSPACE.

Proof. For a language L ⊆ Σ∗ we denote by L the complement Σ∗ \ L of L. Let
A = 〈Σ, QA, qIA, δA, FA〉 be a DFA and let k ∈ N be encoded in unary. We non-
deterministically guess n ≤ k DFAs A1,A2, . . . ,An with Ai = 〈Σ, QAi , qIAi , δAi , FAi〉
for 1 ≤ i ≤ n, such that |Ai| < |A|. We implicitly build the product DFA Πn

1Ai =

A1 × A2 × . . .An over the state space QA1 × QA2 × · · · × QAn with the start state
(qIA1

, qIA2
, . . . , qIAn) and set of final states FA1×FA2×· · ·×FAn , where in the i’th compo-

nent the run of the DFA Ai on the input is simulated. We do not build this DFA explicitly
as it is of exponential size in |QA|. Note that Πn

1Ai accepts
⋂

1≤i≤n L(Ai). In order to
prove whether L(A) = L(Πn

1Ai) it is sufficient to verify that (1) L(A) ∩ L(Πn
1Ai) = ∅

and (2) L(A) ∩ L(Πn
1Ai) = ∅. As Πn

1Ai is a DFA, we can obtain a DFA for the com-
plementary language L(Πn

1Ai) by complementing on the set of final states. We can test
the complementary statement of both (1) and (2) by letter-wise guessing a word in the
intersection and applying its map on the initial state of both DFAs. As we only need
to store the active state of both DFAs, this can be done in NPSPACE. As NPSPACE is
closed under complement and is equal to PSPACE, the claim follows.

For commutative permutation DFAs, we obtain a better algorithm through the use of
the results obtained in the previous sections, and we show a matching hardness result.

20

260 Decomposing Permutation Automata

Theorem 6. The Bound-Decomp problem for commutative permutation DFAs is NP-
complete.

Both parts of the proof of Theorem 6 are based on Lemma 5: a commutative permutation
DFA is k-factor composite if and only if there exist k words covering all of its rejecting
states. We prove the two following results:

• Bounded compositionnality is decidable in NP, as it is sufficient to non-determi-
nistically guess a set of k words, and check whether they cover all rejecting states
(Lemma 8);

• The NP-hardness is obtained by reducing the Hitting Set problem, a well known
NP-complete decision problem. We show that searching for k words that cover the
rejecting states of a DFA is as complicated as searching for a hitting set of size k−1

(Lemma 9).

We finally give a LOGSPACE algorithm based on known results for DFAs on unary al-
phabets [Jecker et al., 2020]. We begin with the case of unary DFAs.

Theorem 7. The Bound-Decomp problem for unary DFAs is in LOGSPACE.

Sketch. Recall that a unary DFA A = 〈{a}, Q, qI , δ, F 〉 consists of a chain of states
leading into one cycle of states. The case where the chain is non-empty is considered
in Lemmas 8-10 of [Jecker et al., 2020]. We prove that the criteria of these lemmas can
be checked in LOGSPACE. If the chain of A is empty, then A is actually a commutative
permutation DFA. In this case, by Proposition 2 for every word u = ai ∈ {a}∗, the
orbit of the set {δ(qI , uλ) | λ ∈ N} is a partition ρ on Q, and every set in ρ has the
same size sρ. Both sρ and |ρ| divide |Q|. For u = ai where i and |Q| are co-prime,
the induced orbit DFA has a single state and thus cannot be a factor of A. Further, if
i1 < |Q| divides i2 < |Q|, then all states covered by ai1 are also covered by ai2 . Hence,
w.l.o.g., we only consider words of the form ai where i is a maximal divisor of |Q| in
order to generate orbit-DFAs of A that are candidates for the decomposition. Now, let
pj11 · pj22 · . . . · pjmm = |Q| be the prime factor decomposition of |Q|. Recall that |Q| is
given in unary and hence we can compute the prime factor decomposition of |Q| in space
logarithmic in |Q|. By Lemma 5 we have that A is k-factor composite if and only if a
selection of k words from the set W = {a|Q|/pi | 1 ≤ i ≤ m} cover all the rejecting states
of A. As |W| = m is logarithmic in |Q|, we can iterate over all sets in 2W of size at
most k in LOGSPACE using a binary string indicating the characteristic function. By
Lemma 6, checking whether a state q ∈ Q is covered by the current collection of k words
can also be done in LOGSPACE.

21

261

In order to prove the theorem, we first show that the result holds for unary permuta-
tion DFAs, and then we show how this extends to the general setting.

Lemma 7. The Bound-Decomp problem for permutation unary DFAs is in LOGSPACE.

Proof. Let A = 〈{a}, Q, qI , δ, F 〉 be a trim permutation DFA. Since the alphabet of A is
unary, A is also commutative. Hence, by Proposition 2 for every word u = ai ∈ {a}∗,
the orbit of the set {δ(qI , uλ) | λ ∈ N} is a partition ρ on Q. Since A is a permutation
DFA, every word induces a permutation of Q and therefore, every set in the partition ρ
has the same size sρ. Hence, both sρ and |ρ| divide |Q|. Further, note that for every
integer i > 1 there is at most one partition ρ of Q of size |ρ| = i that is consistent with
the transition relation of A, and this partition (if existent) corresponds to the orbit-DFA
generated by the word a|Q|/i where i evenly divides |Q|. Every word ai where i and |Q|
are co-prime generates a trivial partition {δ(qI , uλ) | λ ∈ N} = Q corresponding to the
trivial orbit-DFA which has only one state. As trivial orbit-DFAs do not contribute to
a decomposition, it is sufficient to consider only words ai where i is a divisor of |Q| to
generate all orbit-DFAs of A that needs to be considered in order to obtain a k-factor
decomposition of A. Further, note that for two integers i1 and i2 it holds that if i1
divides i2, then all states covered by ai1 are also covered by ai2 . Therefore, while looking
for covering words it is sufficient to look through the maximal divisors of |Q|, that is,
the divisors that do not divide other divisors.

Now, let pj11 ·pj22 · . . . ·pjmm = |Q| be the prime factor decomposition of |Q|, i.e., pi are prime
numbers for 1 ≤ i ≤ m. By the discussion above, and Lemma 5 we have thatA is k-factor
composite if and only if a selection of k words from the set W = {a|Q|/pi | 1 ≤ i ≤ m}
cover all the rejecting states of A. Note that |W| = m is logarithmic in |Q| and hence,
the size of the power set 2W of W is linear in |Q|. Further, we can represent a set in 2W

as a binary string (with a 1 at position i iff the ith element is in the set represented by
the string) of size m and iterate through 2W in logarithmic space. We can now check
whether A is k-factor composite by iterating through 2W and testing whether for one set
of words, each rejecting state of A is covered by one of the words in the considered set.
How to verify that a rejecting state is covered by a word in logarithmic space is discussed
in the proof of Lemma 6. Note that since |Q| is given in unary, we can compute a prime
divisor pi of |Q| in logarithmic space when needed and only need to store the currently
considered word a|Q|/pi in binary. The described LOGSPACE-algorithm is summarized in
the first case of Algorithm 3.

General unary DFAs consist of a cycle and a potentially empty chain of states from the
initial state into the cycle. If this chain is empty, the DFA is actually a permutation DFA.
If the tail is non-empty, then the DFA A is composite if and only if A is 2-composite, or

22

262 Decomposing Permutation Automata

not minimal (and hence 1-composite) due to Lemma 8-10 in [Jecker et al., 2020]. The
criteria in [Jecker et al., 2020, Lemma 8] and [Jecker et al., 2020, Lemma 9] can obviously
be checked in LOGSPACE. The remaining criteria of [Jecker et al., 2020, Lemma 10]
considers unary DFAs A where the two preimages of the state in the cycle, connecting
the cycle with the chain, are separated by the set of final states. If the preimage from
the chain is rejecting and the preimage qc from the cycle is accepting, then we can
simply decompose the automaton into an automaton where the cycle is collapsed to one
accepting state and into one automaton where the chain is collapsed adjusting the initial
state onto the cycle. If on the other hand, the preimage from the chain is accepting
and the preimage qc from the cycle is rejecting, then [Jecker et al., 2020, Lemma 10]
states that A is composite if and only it is 2-composite if and only if the state qc is
covered by some word w in the commutative permutation sub-automaton consisting of
the cycle only. The latter case can be checked in logarithmic space as a consequence of
Lemma 7 yielding in summary a proof of Theorem 7. The complete algorithm solving
the Bound-Decomp problem for unary DFAs in LOGSPACE is depicted in Algorithm 3.

Function isBoundedComposite(A = 〈{a}, Q, qI , δ, F 〉 : unary DFA, integer k)
if A is permutation DFA then

foreach binaryString wordCombination ∈ {0, 1}log |Q| with ≤ k ones do
/* wordCombination represents current set in 2W */
if testWordCombination(A, wordCombination) then return True

/* Set of words covering all rejecting states found */

return False /* No covering set found */
else

call [Jecker et al., 2020, Algorithm 1]

Function testWordCombination(A = 〈{a}, Q, qI , δ, F 〉 : unary DFA,
wordCombination : binaryString)
foreach q ∈ Q \ F do

if not cover (A, q,wordCombination) then return False /* Found state
not covered by current set */

return True
Function coverBySet(A = 〈{a}, Q, qI , δ, F 〉 : unary DFA, q ∈ Q \ F ,
wordCombination : binaryString)
foreach int i with wordCombination[i] ?= 1 do /* Go through all ≤ k
words in the set and test if q is covered */
compute p1 := i’th prime divisor of |Q|
if cover(A, q, δ(q, a|Q|/pi)) then return True /* Function cover from
Algorithm 2 */

return False
Algorithm 3: LOGSPACE-algorithm solving the Bound-Decomp problem for
unary DFAs.

23

263

5.1 Proof of Theorem 6

By Lemma 5, a commutative permutation DFA A is k-factor composite if and only if its
rejecting states can be covered by k words. As we can suppose that covering words have
size linear in |A| (see proof of Lemma 6), the Bound-Decomp problem is decidable
in NP: we guess a set of k covering words and check in polynomial time if they cover all
rejecting states.

Lemma 8. The Bound-Decomp problem for commutative permutation DFAs is in NP.

Proof. Let A = 〈Σ, Q, qI , δ, F 〉 be a commutative permutation DFA. By Lemma 5 we
have that A is k-factor composite if and only if there are k words that, together, cover
all rejecting states of A. Recall that a word w covers a state q if δ(q, w) 6= q and for every
λ ∈ N, the state δ(q, uλ) is rejecting. Since A is a commutative permutation DFA, for
each word w ∈ Σ∗ with |w| > |Q| there exists a word u ∈ Σ∗ with |u| < |Q| that induces
the same mapping as w, in particular, δ(q, wλ) = δ(q, uλ) for all q ∈ Q, λ ∈ N. Hence,
it is sufficient to test whether the rejecting states of A can be covered by k words of
length up to |Q|. As we can guess these words ui in polynomial time and check whether
they cover all rejecting states q by computing the sets {δ(q, uλ) | λ ≤ |Q|} in polynomial
time, the claim follows. The procedure is summarized in Algorithm 4.

Function isBoundedComposite(commutative permutation DFA A, integer k)
guess W := {wi ∈ Σ≤|Q| | i ≤ k}
foreach p ∈ Q \ F do

if not cover(A, p,W) then return False /* Some p not covered? */

return True /* all p are covered */

Function cover(commutative permutation DFA A, state p, set of words W)
foreach wi ∈ W do

compute Qq,wi := {δ(q, wλi) | λ ≤ |Q|}
if Qq,wi ∩ F = ∅ then return True

return False
Algorithm 4: NP-algorithm solving the Bound-Decomp problem for commutative
permutation DFAs.

We show that the problem is NP-hard by a reduction from the Hitting Set problem.

Lemma 9. The Bound-Decomp problem is NP-hard for commutative permutation
DFAs.

Proof. The proof goes by a reduction from the Hitting Set problem (HIT for short),
known to be NP-complete [Garey and Johnson, 1979]. The HIT problem asks, given a

24

264 Decomposing Permutation Automata

q2=0

q2=0

q1=0 q1=0 q1=0 q1=0 q1=0

q2=1

q2=1

q1=1 q1=1 q1=1 q1=1 q1=1

q2=2

q2=2

q1=2 q1=2 q1=2 q1=2 q1=2

q4=1

q4=0

q3 = 0 q3=1 C1={1} q3=2 C2={1, 2} q3=3 C3={2} q3=4

Figure 5: DFA representing the instance of HIT with S = {1, 2} and F =
{{1}, {1, 2}, {2}} using µ = 3 and τ = 5. Accepting states are filled black while re-
jecting states are sectored.

finite set S = {1, 2, . . . , n} ⊆ N, a finite collection of subsets F = {C1, C2, . . . , Cm} ⊆ 2S,
and an integer k ∈ N, whether there is a subset X ⊆ S with |X| ≤ k and X ∩ Ci 6= ∅
for all 1 ≤ i ≤ m. We describe how to construct a DFA A = 〈Σ, Q, qI , δ, F 〉 that is
(k + 1)-factor composite if and only if the HIT instance 〈S,F , k〉 has a solution.

Automaton construction. To be constructed, the automaton A requires µ, τ defined
as the smallest prime numbers that fulfill n < µ andm < τ and 2 < µ < τ . By Bertrand’s
postulate [Meher and Murty, 2013], µ and τ have a value polynomial in m + n. The
state space of A is defined as Q = {0, 1, . . . , µ − 1} × {0, 1, . . . , µ − 1} × {0, 1, . . . ,
τ − 1} × {0, 1} with qI = (0, 0, 0, 0) as initial state. Let us define the subset of states
Q⊥ = {(q1, q2, q3, q4) ∈ Q | q4 = 0} to encode instances of HIT and the subset Q> =

{(q1, q2, q3, q4) ∈ Q | q4 = 1} which is a copy of Q⊥ with minor changes. The example
in Figure 5 gives some intuition on the construction of A. The DFA A is defined over
the alphabet Σ = {a, b, c, d} with the transition function defined for each state q =

(q1, q2, q3, q4) by δ(q, a) = (q1 + 1 mod µ, q2, q3, q4), δ(q, b) = (q1, q2 + 1 mod µ, q3, q4),
δ(q, c) = (q1, q2, q3 + 1 mod τ, q4) and δ(q, d) = (q1, q2, q3, q4 + 1 mod 2). Note that,
A can be seen as a product of four prime finite fields. In particular, for every q3 ∈
{0, . . . , τ − 1} the subset of states {(x, y, q3, 0) ∈ Q⊥ | 0 ≤ x, y ≤ µ − 1} can be seen
as the direct product of two copies of the field of order µ (a.k.a. Fµ), thus inheriting
the structure of a Fµ-vector space of origin (0, 0, q3, 0). We use these τ disjoint vector
spaces to represent the collections of F via the acceptance of states. More precisely, each
collection Ci ∈ F is encoded through the vector space {(x, y, i, 0) ∈ Q⊥ | 1 ≤ i ≤ m}
and each v ∈ Ci is encoded by the non-acceptance of all states belonging to the line
{(x, y, i, 0) ∈ Q⊥ | y = vx mod µ}. In Figure 5, each Ci is presented by an instance

25

265

of F3 × F3 and each v ∈ Ci is depicted by rejecting states with the same emphasized
sector. Since τ > m, there are extra vector spaces for which all states are accepting
i.e. {(q1, q2, q3, 0) ∈ Q⊥ | q3 /∈ {1, 2, . . . ,m}} ⊆ F . The acceptance of states of Q>
is defined similarly as for Q⊥ except that the origins of vector spaces are accepting
in Q> (see Figure 5). Formally, the rejecting states of A is defined by F = R⊥ ∪ R>
where R⊥ = {(q1, q2, q3, 0) ∈ Q⊥ | q2 = vq1 mod µ, 1 ≤ q3 ≤ m, v ∈ Cq3} and R> =

{(q1, q2, q3, 1) ∈ Q> | (q1, q2, q3, 0) ∈ R⊥, q1 6= 0, q2 6= 0}. All other states are accepting,
i.e., we set F = Q \F . So, the acceptance of the subsets of states Q⊥ and Q> only differ
by O ∩Q⊥ ⊆ F and O ∩Q> ⊆ F where O = {(0, 0, q3, q4) ∈ Q | q3 ∈ {1, . . . ,m}}.

The cornerstone which holds the connection between the two problems is the way the
rejecting states of O can be covered. In fact, since Q> mimics Q⊥ for states in Q \ O,
all rejecting states of Q \O can be covered by the single word d ∈ Σ. In addition, most
words do not cover any rejecting states of A, as stated by the following claim. Hereafter,
we say that a word w ∈ Σ∗ is concise when it satisfies #σ(w) < hσ for all σ ∈ Σ, where
hσ ∈ {2, µ, τ} is the size of the cycle induced by σ.

Claim 1. Let u ∈ Σ∗ be a concise word that covers some rejecting state of A:

1. u must belong either to {d}∗ or to {a, b}∗ \ ({a}∗ ∪ {b}∗).

2. u covers some rejecting state of Q> iff u covers all rejecting states of Q> iff u = d.

3. u covers (0, 0, i, 0) ∈ O iff u ∈ {a, b}∗ and #b(u) ≡ v · #a(u) mod µ for some
v ∈ Ci.

Proof of Item 1. The statement is a direct consequence of the following:

i. Every concise word u satisfying #c(u) > 0 covers no rejecting state of A;

ii. Every concise word u ∈ {a}∗ ∪ {b}∗ covers no rejecting state of A;

iii. Every concise word u satisfying #a(u) > 0 and #d(u) > 0 covers no rejecting state
of A;

iv. Every concise word u satisfying #b(u) > 0 and #d(u) > 0 covers no rejecting state
of A.

In order to prove these four properties, we now fix a state q = (q1, q2, q3, q4) ∈ Q, and we
show that, in each case, iterating a word of the corresponding form starting from q will
eventually lead to an accepting state:

26

266 Decomposing Permutation Automata

(i.) Let u be a concise word satisfying #c(u) > 0. Since u is concise we have #c(u) < τ .
Hence, as τ is prime, there exists λ ∈ N such that λ · #c(u) ≡ −q3 mod τ . Therefore
the third component of δ(q, uλ) is 0, thus it is an accepting state of A.

(ii.) Let u ∈ {a}∗ be a concise word (if u ∈ {b}∗ instead, the same proof works by
swapping the roles of q1 and q2). Since u is concise we have 0 < #a(u) < µ. Hence, as µ is
prime there exists λ1, λ2 ∈ N satisfying λ1 ·#a(u) ≡ −q1 mod µ and λ2 ·#a(u) ≡ −q1 +1

mod µ. Therefore, if q2 6= 0, we get that δ(q, uλ1) = (0, q2, q3, q4) is an accepting state
of A, and if q2 = 0, we get that δ(q, uλ2) = (1, 0, q3, q4) is an accepting state of A.

(iii.) Let u be a concise word satisfying #a(u) > 0 and #d(u) > 0. Since µ is a prime
number greater than 2, there exist α ∈ N such that µ− 2α = 1, thus 2α ≡ −1 mod µ.
Moreover, since u is concise we have #d(u) = 1 and #a(u) < µ. Hence there exists β ∈ N

such that β ·#a(u) ≡ 1 mod µ. Therefore, if we let λ = 2αβq1 + µ(1− p4), we get

#a(u
λ) = 2α · β#a(u) · q1 + µ(1− p4) ·#a(u) ≡ −q1 mod µ;

#d(u
λ) = 2αβq1 + µ · (1− p4) ≡ p4 + 1 mod 2;

As a consequence, the first component of δ(q, uλ) is 0 and its fourth component is 1,
hence it is an accepting state of A.

(iv.) Let u be a concise word satisfying #b(u) > 0 and #d(u) > 0. Then we can prove
that u does not cover q as in point (3), by swapping the roles of q1 and q2.

Proof of Item 2. First, remark that d is the only concise word of {d}∗. By construction
of A, we have (q1, q2, q3, 0) ∈ F if and only if (q1, q2, q3, 1) ∈ F holds for all (q1, q2, q3, q4) ∈
Q \O. Thus, for all (q1, q2, q3, q4) ∈ F \O we have

{δ((q1, q2, q3, q4), dλ) | λ ∈ N} = {(q1, q2, q3, x) | x ∈ {0, 1}} ⊆ F .

Hence, if u = d then u covers all rejecting states of of Q>.

Now suppose that u ∈ Σ∗ covers some rejecting state q = (q1, q2, q3, 1) ∈ Q>. By
Item (1.), either u ∈ {d}∗ or u ∈ {a, b}∗ \ ({a}∗ ∪ {b}∗). We show that u ∈ {d}∗, by
supposing that #a(u) > 0 and deriving a contradiction. Since µ is prime, there exists
λ ∈ N satisfying λ ·#a(u) ≡ −q1 mod µ. Therefore the first component of δ(q, uλ) is 0

and its fourth component is 1, hence it is accepting, which contradicts the assumption
that u covers q.

Proof of Item 3. Consider a rejecting state q = (0, 0, i, 0) ∈ O. First, remark that no
word in {d}∗ covers q since (0, 0, i, 1) is accepting. Therefore, by Item (1.), the only

27

267

concise words that can cover q are the words u ∈ {a, b}∗ \ ({a}∗ ∪ {b}∗). For such
a word u, since µ is prime, by Bezout’s identity there exists 0 < v < µ satisfying
#b(x) ≡ v · α#a(x) mod µ, hence

{δ((0, 0, i, 0), uλ) | λ ∈ N} = {(q1, q2, i, 0) ∈ Q | q2 ≡ vq1 mod µ}.

If v ∈ Ci, all the states in this set are rejecting, thus u covers (0, 0, i, 0), but if v /∈ Ci,
all these states except from (0, 0, i, 0) are accepting, thus u does not cover (0, 0, i, 0).

We finally conclude the proof of Lemma 9 by proving that the sets of the initial instance
of HIT are hitting if and only if the automaton A is composite.

If sets are hitting then the automaton is composite. Due to Lemma 5, we can
show thatA is (k+1)-factor composite by finding (k+1) words, namely w>, w1, w2, . . . , wk,
which all together cover all the rejecting states of A. From the HIT solution X =

{v1, v2, . . . , vk} ⊆ S, we define wj = abvj for all 1 ≤ j ≤ k. We prove now that for all
1 ≤ i ≤ m, the rejecting state (0, 0, i, 0) ∈ O is covered by some wj. Since X ∩ Ci 6= ∅,
there exists vj ∈ X ∩ Ci. Moreover, by definition of wj, we have wj ∈ {a, b}∗ and
#b(wj) ≡ vj · #a(wj) mod µ. Therefore, by Claim 1.3, (0, 0, i, 0) is covered by wj.
Finally, we take w> = d which covers all rejecting states F \O by Claim 1.2.

If the automaton is composite then the sets are hitting. Suppose that A is
(k + 1)-factor composite. Hence, by Lemma 5, there exists a set W of at most k + 1

words such that all rejecting states of A can be covered by some w ∈ W . In addition, we
assume that each w ∈ W is concise: if this is not the case, we can remove the superfluous
letter to obtain a concise words that cover the same rejecting states. As a consequence
of Claim 1.2, to cover the rejecting states of Q>, the set W needs the word d, thus W
contains at most k words in {a, b}∗. Moreover, by Claim 1.3, for every 1 ≤ i ≤ m, to
cover (0, 0, i, 0) ∈ O the set W needs a word ui ∈ {a, b}∗ satisfying #b(ui) ≡ vi ·#a(ui)

mod µ for some vi ∈ Ci. To conclude, we construct X = {vi | 1 ≤ i ≤ m} which is a
solution since |X| ≤ k due toW ∩{d}∗ 6= ∅, and for each C ∈ F we have X∩C 6= ∅.

6 Discussion

We introduced in this work powerful techniques to treat the Decomp problem for per-
mutation DFAs. We now discuss how they could help solving the related questions that
remain open:

28

268 Decomposing Permutation Automata

• How do the insights obtained by our results translate to the general setting?

• How can we use our techniques to treat other variants of the Decomp problem?

Solving the general setting. The techniques presented in this paper rely heavily on
the group structure of transition monoids of permutation DFAs, thus cannot be used
directly in the general setting. They still raise interesting questions: Can we also obtain
an FPT algorithm with respect to the number of rejecting states in the general setting?
Some known results point that bounding the number of states is not as useful in general
as it is for permutation DFAs: while it is known that every permutation DFA with a single
rejecting state is prime [Kupferman and Mosheiff, 2015], there exist (non-permutation)
DFAs with a single rejecting state that are composite. However, we still have hope to
find a way to adapt our techniques: maybe, instead of trying to cover rejecting states,
we need to cover rejecting behaviors of the transition monoid. Another way to improve
the complexity in the general setting would be to bound the width of DFAs: we defined
here a family of DFAs with polynomial width, do there exist families with exponential
width? If this is not the case (i.e., every composite DFA has polynomial width), we would
immediately obtain a PSPACE algorithm for the general setting.

Variants of the Decomp problem. In this work, we focused on the Bound-

Decomp problem, that limits the number of factors in the decompositions. Numerous
other restrictions can be considered. For instance, the Fragmentation problem bounds
the size of the factors: Given a DFA A and k ∈ N, can we decompose A into DFAs of size
smaller than k? Another interesting restriction is proposed by the Compression prob-
lem, that proposes a trade-off between limiting the size and the number of the factors:
given a DFA A, can we decompose A into DFAs (Ai)1≤i≤k satisfying Σn

i=1|Ai| < |A|?
How do these problems compare to the ones we studied? We currently conjecture that
the complexity of the Fragmentation problem matches the Decomp problem, while
the complexity of the Compression problem matches the Bound-Decomp problem:
for commutative permutation DFAs, the complexity seems to spike precisely when we
limit the number of factors.

References

[Baier and Katoen, 2008] Baier, C. and Katoen, J. (2008). Principles of Model Checking.
MIT Press.

29

269

[Clarke et al., 1991] Clarke, E. M., Long, D. E., and McMillan, K. L. (1991). A language
for compositional specification and verification of finite state hardware controllers.
Proceedings of the IEEE, 79(9):1283–1292.

[de Roever et al., 1998] de Roever, W. P., Langmaack, H., and Pnueli, A., editors
(1998). Compositionality: The Significant Difference, International Symposium,
COMPOS’97, Bad Malente, Germany, September 8-12, 1997. Revised Lectures, vol-
ume 1536 of Lecture Notes in Computer Science. Springer.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
USA.

[Gould et al., 2007] Gould, S., Peltzer, E., Barrie, R. M., Flanagan, M., andWilliams, D.
(2007). Apparatus and method for large hardware finite state machine with embedded
equivalence classes. US Patent 7,180,328.

[Hardy, 1929] Hardy, G. H. (1929). An introduction to the theory of numbers. Bulletin
of the American Mathematical Society, 35(6):778–818.

[Jecker et al., 2020] Jecker, I., Kupferman, O., and Mazzocchi, N. (2020). Unary prime
languages. In Esparza, J. and Král, D., editors, 45th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020,
Prague, Czech Republic, volume 170 of LIPIcs, pages 51:1–51:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

[Kunc and Okhotin, 2013] Kunc, M. and Okhotin, A. (2013). Reversibility of computa-
tions in graph-walking automata. In Chatterjee, K. and Sgall, J., editors,Mathematical
Foundations of Computer Science 2013 - 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings, volume 8087 of Lecture
Notes in Computer Science, pages 595–606. Springer.

[Kupferman and Mosheiff, 2015] Kupferman, O. and Mosheiff, J. (2015). Prime lan-
guages. Information and Computation, 240:90–107.

[Landauer, 1961] Landauer, R. (1961). Irreversibility and heat generation in the com-
puting process. IBM Journal of Research and Development, 5(3):183–191.

[Meher and Murty, 2013] Meher, J. and Murty, M. R. (2013). Ramanujan’s proof of
Bertrand’s postulate. The American Mathematical Monthly, 120(7):650–653.

[Netser, 2018] Netser, A. (2018). Decomposition of safe languages. Amirim Research
Project report from the Hebrew University.

30

270 Decomposing Permutation Automata

[Pedroni, 2013] Pedroni, V. A. (2013). Finite State Machines in Hardware: Theory and
Design (with VHDL and SystemVerilog). The MIT Press.

[Pin, 1992] Pin, J. (1992). On reversible automata. In Simon, I., editor, LATIN ’92, 1st
Latin American Symposium on Theoretical Informatics, São Paulo, Brazil, April 6-10,
1992, Proceedings, volume 583 of Lecture Notes in Computer Science, pages 401–416.
Springer.

31

271

Index

k-factor decomposition, 246

L(B)-Constr-Sync, 45, 92

L-Membership, 211

n-Turn-Sync-DPDA, 163

n-Turn-Sync-DVPDA, 52, 185

Bound-Decomp, 260

Bounded DFA Intersection, 61

Bounded NFA Intersection, 62

Bounded NFA Non-Universality, 62

CSP CNF Satisfiablity, 62

Careful Sync, 128

Careful Sync of PWAAs, 137, 142

Clique, 43

DFA Bound-Decomp, 56, 242

DFA Decomp, 56, 242

DFA-Sync-Into-Subset, 166

DFA-Sync, 156

Dominating Set, 43

Exact-Sync-Into-Subset, 63

Hitting Set, 264

Intersection Non-emptiness, 53, 209

Longest Common Subsequence, 62

Max-Sync-Set-Total-0 -∝l<fw@p, 145

Monoid Factorization, 61

Non-universality for NFAs, 231

Post Correspondence Problem, 163

Quantum-Exact-Sync-Into-Subset, 63

Quantum-Sync-From-Subset, 64

Quantum-Sync-Into-Subset, 63

Set-Rank-Total-0 -∝l<fw@p, 145

Short Sync Word, 61

Short-Sync-Word-Total-0 -∝l<fw@p, 145

State-Del-Car-Syn, 59

Subset-Sync-Under-lw, 47, 125

Sync-DBCA, 50

Sync-DCA, 50, 157

Sync-DPBCA, 50, 157

Sync-DPDA, 50, 157

Sync-DVCA, 52, 184

Sync-DVPDA, 52, 184

Sync-DVVPDA, 52, 184

Sync-From-Subset, 93, 185

Sync-Into-Subset-0 -∝l<fw@p, 146

Sync-Into-Subset, 93, 185

Sync-Under-lw, 47, 125

Sync-Under-Total-∝l<fw@p, 49, 127

Trace-Sync-Transducer, 171, 196

Trans-Add-Car-Syn, 60

Vertex Cover, 43, 128

aperiodic monoid, 24

arbitrary stack model, 50, 157, 183

assembly line, 5, 122

BCA, 31

blind counter automaton, 31

Boolean closure, 210

bounded decomposition, 260

CA, 30

carefully synchronizing, 59

Cohen-Brzozowski hierarchy, 53, 210

commutative DFA, 27, 57, 246

commutative language, 225

commutative regular language, 27

commutative star-free language, 225

completeness, 41

completing partial automata, 59

INDEX 273

composite DFA, 246

compositionality, 242

concatenation hierarchy, 25, 210

constraint automaton, 45, 92

constraint language, 45, 92

context-free language, 28

counter automaton, 30

covering word, 253

DBCA, 161

DCA, 157

decomposing automata, 14, 56, 241–269

decompositions of commutative permuta-

tion DFAs, 252

decompositions of permutation DFAs, 247

deterministic blind counter autmaton, 161

deterministic context-free language, 29

deterministic counter automaton, 157

deterministic finite automaton, 21

deterministic partially blind counter au-

tomaton, 157

deterministic push-down automaton, 29,

156, 182

deterministic very visibly push-down au-

tomaton, 183

deterministic visibly counter automaton,

184

deterministic visibly push-down automa-

ton, 183

DFA, 21

DFAs in hardware, 243

diversity of solutions, 60

dot-depth hierarchy, 25, 53, 210

DPBCA, 157, 160

DPDA, 29, 50, 156, 182

DVCA, 184

DVPDA, 51, 183

DVVPA, 183

dynamic constraints, 5, 47, 121–146

empty stack model, 50, 157, 183

EXPTIME, 39

finite-turn DPDAs, 162

finite-turn DVPDA, 189

finite-turn PDA, 33

fixed-parameter tractable, 42

FPT, 42

intersection non-emptiness, 11–16, 53, 205–

234

LOG, 39

LTL, 127

marked product, 210

Myhill-Nerode, 21

nested word automaton, 155

NEXPTIME, 39

NFA, 20, 209

NLOG, 39

non-deterministic context-free language, 28

non-deterministic finite automaton, 20, 209

NP, 39

NPSPACE, 39

orbit cover, 250

orbit-DFA, 247

order l < l, 48, 126

order l ≤ l, 48, 126

order l < f , 49, 127

P, 39

parameterized complexity, 41

parameterized reduction, 42

partially blind counter automaton, 32, 160

partially ordered automaton, 27, 211, 221

parts orienter, 5, 122

PBCA, 32, 160

PCP, 163

PDA, 28

274 INDEX

permutation DFA, 28, 56, 246

permutation regular language, 28

Petri net reachability, 160

piecewise testable language, 211

poDFA, 27, 211

polynomial closure, 25, 210

poNFA, 27, 211, 221

prime DFA, 246, 247

PSPSACE, 39

push-down automaton, 7, 28

QFA, 63

quantum computing, 62

quantum finite automaton, 62

quantum sync backward setting, 64

quantum sync forward setting, 63

reduction, 40

reduction from 3-CNF-SAT, 226

reduction from Careful Sync, 131, 135

reduction from Graph Accessibility, 213

reduction from Hitting Set, 264

reduction from Intersection Non-

emptiness for real-time DCAs, 158

reduction from NFA Non-universality,

211

reduction from Sync-From-Subset, 102,

110, 188, 191

reduction from Sync-Into-Subset, 102,

166, 187, 189

reduction from Vertex Cover, 132, 219

reduction from PCP, 164, 171

reduction from the machine language for

PSPACE, 230

reduction from WAA Sync-From-Subset,

142

regular constraints, 4, 45, 87–115

regular expression, 19

regular language, 19, 22

returning automaton, 96

reversible DFA, 244

same stack model, 50, 157, 183

Schützenberger theorem, 25

semi-automaton, 121

sequential transducers, 171, 196

shuffle ideal, 213

space bound, 39

stack height profile, 33

star-free expression, 24

star-free language, 12, 24

Straubing-Thérien hierarchy, 25, 53, 210

subset sync under order, 47

sync under order, 47, 121

sync under regular constraint, 92

sync under total order, 49

synchronization, 3

synchronization problem, 4

synchronizing automaton, 3, 91, 122, 156,

182

synchronizing DPDAs, 50, 153–172

synchronizing DVPDAs, 51, 179–198

synchronizing quantum finite automata, 62

synchronizing word, 4

synchronizing words for PWAAs, 137

syntactic congruence, 22

time bound, 39

totally star-free NFA, 227

trace-synchronizing sequential transducers,

171, 196

transition monoid, 22

Turing machine, 37

variants of Decomp, 269

very visibly push-down automaton, 34

very visibly sequential transducer, 196

visibly push-down automaton, 9, 34

visibly push-down language, 33

visibly sequential transducer, 196

INDEX 275

VPDA, 34

VST, 196

VVPDA, 34

VVST, 196

W[1], 42

W[2], 43

W[Sync], 60

WAA, 123

weakly acyclic automaton, 123

width of a DFA, 246

XP, 44

	Scientific Environment
	Academic CV of the Author
	Acknowledgments
	Abstract
	Zusammenfassung
	List of Publications
	I Background
	Introduction
	Formal Language Theory
	Regular Languages
	Models of Representation
	Subclasses of Regular Languages

	Context-Free Languages
	(Non-Deterministic) Context-Free Languages
	Deterministic Context-Free Languages
	Counter Automata
	Finite-Turn Push-Down Automata
	Visibly Push-Down Languages

	Computational Complexity
	Classical Time and Space Classes
	Parameterized Complexity

	Overview of Scientific Results in Part II
	Directions for Future Research
	Appendix of Part I

	II Publications
	Synchronization under Regular Constraints
	Synchronization under Dynamic Constraints
	Synchronizing Deterministic Push-Down Automata
	Synchronization of Deterministic Visibly Push-Down Automata
	Intersection Non-emptiness for Star-Free Language Classes
	Decomposing Permutation Automata

