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Abstract

A central computational problem in the realm of automata theory is the problem of
determining whether a finite automaton A has a synchronizing word. This problem has found
applications in a variety of subfields of artificial intelligence, including planning, robotics,
and multi-agent systems. In this work, we study this problem within the framework of
diversity of solutions, an up-and-coming trend in the field of artificial intelligence where the
goal is to compute a set of solutions that are sufficiently distinct from one another.

We define a notion of diversity of solutions that is suitable for contexts were solutions are
strings that may have distinct lengths. Using our notion of diversity, we show that for each
fixed r ∈ N, each fixed finite automaton A, and each finite automaton B given at the input,
the problem of determining the existence of a diverse set {w1, w2, . . . , wr} ⊆ L(B) of words
that are synchronizing for A can be solved in polynomial time. Finally, we generalize this
result to the realm of conformant planning, where the goal is to devise plans that achieve a
goal irrespectively of initial conditions and of non-determinism that may occur during their
execution.

1 Introduction

A word w is said to be synchronizing for a deterministic finite automaton (DFA) A if there is
some state q of A such that any state q′ is sent to q by w. This concept has found numerous
applications across several subfields of computer science and artificial intelligence, such as circuit
testing [46, 54, 75], multi-agent systems [16, 17, 71], robotics [67], game theory [63], among
others.

The most central problem in the field of synchronization is the one to determine whether
a given DFA has a synchronizing word. Note that this problem can be decided in polynomial
time [79]. Nevertheless, in several applications, one is interested in finding a synchronizing word
satisfying certain additional constraints [30, 88, 83]. Here, the complexity landscape of the
problem changes drastically: even the problem of determining the existence of a synchronizing
word satisfying certain additional regularity constraints is NP-hard. For instance, it is NP-hard
to determine whether a given DFA A has a synchronizing word that belongs to the regular
language ab∗a [30], or whose length is bounded by a given integer [73, 28].

Diversity of solutions is a trend that has been calling substantial attention of the artificial
intelligence community during the past years [44, 7, 70, 6, 31, 51, 5]. Here, the goal is to find not
a single solution to a given combinatorial problem, but rather a small set of solutions that are
sufficiently diverse from each other. One of the motivations for this framework is that it can be
applied in situations where certain side constraints are difficult, or even impossible to formalize.
In this case, the user will have the opportunity to select a solution that she deems to be best
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for her application at hand. Intuitively, the diversity requirement tells us that the solutions
that are given as an output are a good representative of the space of solutions. See [24] for
further discussions of the idea of selecting a diverse set of solutions versus the idea of selecting a
so-called representative set of solutions. On the other hand, small sets of solutions make sense
because one does not want to overwhelm the user with an excessive number of solutions.

While for many combinatorial problems, notions of solution diversity based on the Hamming
distance between pairs of solutions are sufficient, in the context of synchronization, these notions
are not so appropriate. First, distinct solutions may have distinct length, and it is not clear
how positions should be aligned in order to define an appropriate notion of Hamming distance.
Additionally, even strings of the same size that are very similar to each other may have very large
Hamming distance. For instance, the Hamming distance between the string w = abab...ab =
(ab)n and the string w′ = baba...ba = (ba)n is 2n, while w can be transformed into w′ with two
modifications: first delete the first symbol of w and then append the symbol a to the resulting
string.

We circumvent the issue described above by basing our diversity measure in the notion of
edit distance between strings [86, 57]. This is a well studied metric for strings that has many
nice properties and applications in a wide variety of fields [14, 59, 18].

Another issue is that sets of solutions in which any two of them are far apart from each
other may still not capture solution diversity in the context of synchronization. The problem is
that if w is a synchronizing word, then any superword of w is also synchronizing. Therefore, any
sequence of superwords w1, w2, . . . , wk of w of substantially distinct lengths would have large
diversity if only edit distance were taken into consideration. To circumvent this issue, we require
that each word in the set of solutions is subsequence-minimal with respect to the synchronization
requirement. The subsequence minimality requirement combined with edit distance not only
guarantees that solutions in any given subset are genuinely distinct, but also provides a way of
tackling diverse synchronization problems using the machinery of finite automata theory. On
the one hand, Higman’s lemma [47] (see Lemma 8), a classical tool in automata theory, implies
that the set of subsequence-minimal synchronizing words in the language of an automaton is
always finite. On the other hand, the computation of the edit distance between two words is a
process that can be simulated using finite automata. More specifically, it is possible to construct
finite automata accepting a suitable encoding of pairs of words that are far apart from each
other.

Note that subsequence-minimal synchronization problems involving a single DFA A are al-
ready hard. First, subsequence-minimal synchronizing words for a DFA A may have exponential
length on the number of states of A (Proposition 24). Second, determining if a given word w
is subsequence-minimal among all synchronizing words in the language of a DFA A is coNP-
hard (Theorem 22). Third, determining if a DFA A has two distinct subsequence-minimal
synchronizing words is NP-hard (Theorem 28). Finally, the problem of enumerating the set of
subsequence-minimal synchronizing words is #P-hard (Theorem 29).

In order to cope with the inherent intractability of synchronization problems, we leverage
on the framework of parameterized complexity theory [25]. In particular, we show that for each
fixed value of r, interesting computational problems requiring a diverse set with r subsequence-
minimal synchronizing words can be solved in time that is fixed parameter tractable with
respect to the size of the synchronizing automaton A. Previously, algorithms with an FPT
dependence in |A| were unknown even for r = 2! Using our approach we also show that given
a DFA A with state set Q over an alphabet Σ, and a word w ∈ Σ∗ one can determine in time
O(f(|Σ|, |Q|) · |w|), for some function f , if some subsequence-minimal synchronizing word for A
is a subsequence of w, and we can construct such a subsequence in case the answer is affirmative
(Theorem 17). As mentioned above, the unparameterized version of this problems is already
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coNP-hard. Our main result (Theorem 18) states that given numbers r, k ∈ N, a DFA A, and
an possibly nondeterministic finite automaton B over an alphabet Σ, the problem of computing
a subset {w1, . . . , wr} ⊆ L(B) of subsequence-minimal synchronizing words for A, with pairwise
edit distance of at least k, can be solved in time O(fA(r, k) · |B|r log(|B|)) for some suitable
function f depending only on A, r and k. Intuitively, the automaton A is a specification of a
system which we want to synchronize (or reset), and B is a specification of the set of words that
are allowed to be used as synchronizing sequences. As stated in the beginning of this section,
the unparameterized version of this problem is NP-hard even if we are interested in finding a
single solution and the language of the automaton B is as simple as ab∗a. As a consequence
of our main result, given a word w ∈ Σ∗, the problem of determining whether there exist r
subsequence-minimal synchronizing words for A that are subsequences of w and that are at
least k apart from each other can be solved in time O(fA(r, k) · |w|r log(|w|)) (Corollary 19).

It turns out that our notion of diversity of solutions is general enough to be applied in other
contexts where solutions are strings whose sizes may have vary. In particular, we generalize our
framework to the realm of conformant planning (Theorem 33), where the goal is to design plans
that achieve goals irrespectively of initial conditions and of nondeterminism that may occur
during the execution of these plans [4, 12, 20, 68]. In Section 9, we describe quite a number of
further applications of our approach within artificial intelligence. This ranges from the design
of autonomous production lines over the interactionless synchronization of robots and agents in
general to questions in game theory. We also shortly describe a possible application in the area
of molecular computing.

Related Work. Diversity of solutions is a concept that has found applications in several sub-
fields of artificial intelligence, such as information search and retrieval [38, 1], mixed integer
programming [36, 21, 69], binary integer linear programming [40, 82], constraint program-
ming [44, 45], SAT solving [66], recommender systems [2], routing problems [76], answer set
programming [27], decision support systems [58, 42], genetic algorithms [34, 87], planning [7],
computational social choice [5], and in many other fields. Recently, in the context of combi-
natorial optimization, there has been an increasing interest of analysing the notion of diversity
of solutions from the perspective of parameterized complexity theory [6, 5, 31]. Nevertheless,
the computational problems and parameterizations addressed in these works are substantially
distinct from the ones studied here. In the vast majority of these contexts diversity is formalized
using some notion of Hamming distance between solutions represented as a binary vector.

Finally, it is worth noting that the framework of diversity of solutions differs in spirit from
the framework of knowledge compilation, where the goal is to succinct representations of a
large space of solutions for a posteriori processing, [22, 29, 60], and from the framework of
enumeration, where the purpose is to count or list a large number of solutions of a given
combinatorial problem, usually all minimal or maximal solutions with respect to a certain
partial order on the space of solutions [32, 39, 52, 53, 81].

2 Preliminaries

Let N denote the set of non-negative integers, while N>0 is the set of positive integers. For an
integer k ∈ N, we denote by [k] the set {1, 2, . . . , k}. Hence, [0] = ∅.

For n ∈ N,Σn denotes the set of all words of length n. We denote Σ+ =
⋃

n∈N>0
Σn and

Σ∗ = Σ+ ∪ {ε}, where ε denotes the empty word which is the unique word of length zero. We
also use the notation Σ<k =

⋃k−1
n=0Σ

n . Hence, Σ∗ is the groundset of the free monoid generated
by Σ; its binary operation is known as concatenation. Usually, concatenation is denoted by
juxtaposition, but sometimes we explicitly write the concatenation operation as ·. Given a
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word w ∈ Σ∗, we let |w| denote the length of w. For each i ∈ 1, . . . , |w|, we let w[i] denote the
ith symbol of w. For i, j ∈ 1, . . . , |w|, we let w[i..j] denote the infix w[i]w[i+ 1] . . . w[j] of w.

A deterministic finite automaton (DFA) A is a tuple A = (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is a finite alphabet, δ : Q×Σ → Q is a total function called the transition function
of A, q0 ∈ Q is the start state, and F ⊆ Q is the set of final states. For convenience, in the
following, we will sometimes omit start and final states of DFAs. When speaking about the
complexity of algorithms that work with a DFA A, we sometimes use |A| to denote the number
of bits needed to specify A; for convenience, let |A| = |Q| |Σ| log(|Q|) (for DFAs). Often, |Q|
is sufficient as a size estimate. We generalize δ to words by setting δ(q, ε) = q and δ(q, w) =
δ(δ(q, w[1]), w[2..|w|]). We further generalize δ to sets of states S ⊆ Q and to sets of input
letters Γ ⊆ Σ as δ(S,Γ) = {δ(s, γ) : s ∈ S, γ ∈ Γ}, or to words w as δ(S,w) = {δ(s, w) : s ∈ S}.

We assume basic knowledge of automata theory on side of the reader. In particular, the
subset and the product construction for finite automata should be known. Also, we make use
of nondeterministic finite automata (or NFA for short). Recall that with NFAs, the transition
function is replaced by a transition relation. More precisely, a nondeterministic finite automaton
(NFA) A is a tuple A = (Q,Σ, δ, Q0, F ), where Q is a finite set of states, Σ is a finite alphabet,
δ ⊆ Q × Σ → Q is the transition relation of A, Q0 ⊆ Q is the set of start state, and F ⊆ Q is
the set of final states. We generalize δ to words by setting (q, ε, q) ∈ δ and (q, w, q′) ∈ δ iff there
is a state p such that (q, w[1], p) ∈ δ and (p, w[2..|w|], q′) ∈ δ. Alternatively, we can view δ as
a function, mapping 2Q × Σ to 2Q, by setting δ(S,w) = {q : ∃s ∈ S((s, w, q) ∈ δ)}. This also
explains the well-known powerset automaton construction, as now 2A = (2Q,Σ, δ, Q0, F

′) is a
DFA equivalent to A, setting F ′ = {G ⊆ Q : F ∩G ̸= ∅}.

We will discuss several partial orderings on Σ∗ in this this paper. See [11] for a review of
these and other concepts. In particular, x is a prefix of y, written x ⊑ y, if y ∈ xΣ∗, x is a
suffix of y if y ∈ Σ∗x and x is an infix of y, written x ⪯ y, if y ∈ Σ∗xΣ∗. We say that x is a
subsequence of y, written x ≤ y,1 if there exists a sequence of indices i1 < i2 < ... < i|x| such
that for each j ∈ [|x|], yij = xj . If we add the word proper, we exclude the possibility that x = y
in each of the previous definitions. In our notations, we then write ⊏, ≺, or <, respectively. A
non-empty word x can be split into the prefix x[1] of length 1 and the suffix of length |x| − 1
that we call (reminiscent of Prolog) the tail of x, denoting it by tail(x). Hence, x = x[1]tail(x).

Let Σ be some alphabet not containing the symbol □ that we will now use as a blank
symbol. For k ∈ N>0 , define (Σ∪ {□})×k = (Σ∪ {□})k \ {(□, . . . ,□)} as a new alphabet with
(|Σ|+ 1)k − 1 many symbols that we also call compound characters, consisting of k letters. Of
particular importance will be the case k = 2. For this, we now define a specific construction,
called convolution, that takes two words u, v ∈ Σ∗ and constructs a unique word w = u⊗ v over
the alphabet (Σ ∪ {□})×2, in a recursive fashion as follows.

u⊗ v =


ε, if u = v = ε
(u[1],□) · (tail(u)⊗ ε), if u ̸= ε, v = ε
(□, v[1]) · (ε⊗ tail(v)), if u = ε, v ̸= ε
(u[1], v[1]) · (tail(u)⊗ tail(v)), if u ̸= ε, v ̸= ε

For instance, the convolution of word u = ababa with v = abb is the word

u⊗ v = (a, a)(b, b)(a, b)(b,□)(a,□).

This operation can be generalized to the convolution of k > 2 words in a straightforward manner.

1In the literature, the naming of these relations is not unique. Hence, what we call an infix is also known as
a factor or a subword, while what we call a subsequence is also known as subword or scattered subword. We are
using these notions also in order to avoid confusion.
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Lemma 1. The language of all words over the alphabet (Σ ∪ {□})×k that can be obtained as
the convolution of k words over Σ can be accepted by a DFA with 2k many states.

Proof. We give a rather intuitive explanation of the DFA A only in the following. The state
set is {0, 1}k}, with (1, . . . , 1) being a trap state of A. A state (b1, . . . , bk) is understood as
follows. If bi = 0, then no blank symbol was seen reading letters from the ith component of
compound characters. Hence, (0, . . . , 0) is the initial state and, as (□, . . . ,□) /∈ (Σ ∪ {□})×k,
(1, . . . , 1) is a rejecting trap state. If bi = 0 and a blank symbol is seen in the ith component of
the current compound character (to be read from the input), then the DFA moves to a state
with bi = 1, and this is true for all i ∈ [k]. If bi = 0 and a non-blank symbol is seen in the
ith component of the current compound character (to be read from the input), then the DFA
moves to a state with bi = 0, and this is true for all i ∈ [k]. If bi = 1 and a blank symbol is seen
in the ith component of the current compound character (to be read from the input), then the
DFA moves to a state with bi = 1, and this is true for all i ∈ [k]. If bi = 1 and a non-blank
symbol is seen in the ith component of the current compound character (to be read from the
input), then the DFA moves to the trap state (1, . . . , 1). All states but the trap state (0, . . . , 0)
are accepting.

The previous construction can be integrated in the classical product automaton construction
to give the following result.

Corollary 2. Let A = (Q,Σ, δ, q0, F ) be a DFA. Let Ak be a DFA accepting the set of all strings
of the form u1 ⊗ u2 ⊗ · · · ⊗ uk where for each l ∈ [k], ul ∈ L(A). Then, Ak needs to have no
more than (2|Q|)k many states. A similar statement holds for NFAs.

The synchronization problem for deterministic finite automata (DFA) asks for a given DFA
A = (Q,Σ, δ) whether there exists a word w ∈ Σ∗ (called synchronizing word) that maps each
state of A to the same state, i.e., for which |δ(Q,w)| = 1 holds. This problem can be solved in
polynomial time [75, 84], but it becomes NP-complete if an upper bound on the length of the
sought synchronizing word is added to the input [73, 28]. Notice that the classical complexity
picture changes drastically if one considers synchronization problems for partial DFA (i.e., the
transition function may be partial), or for (variations of) NFA, or also if one ask to synchronize
a given set of states, to mention only few variants, all of which turn out to be PSPACE-complete;
see [61, 62, 74, 75].

3 Diversity in Synchronization

In some applications of synchronizing words, it is relevant to construct a synchronizing word that
satisfies additional constraints. Nevertheless, such constraints may either not be completely well-
defined or may yield a much harder synchronization problem. Examples of this phenomenon,
where computing a synchronizing word satisfying simple constraints become PSPACE-complete
can be found in [30, 48, 88]. Therefore, instead of specifying such side constraints formally,
one alternative is to compute several synchronizing words for a given automaton from which
the designer can pick the most suitable one. To have a good variety of choices, the solutions
should be quite diverse. In this section we formulate a notion of solution diversity that suits
the context of synchronization.

We will base our notion of diversity on the notion of edit distance between strings, as it
provides a suitable way of measuring dissimilarity between strings with possibly distinct lengths.
Let u = u[1]u[2] . . . u[n] be a string in Σ. We define the following elementary edit operations
on u; see [57, 86].
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1. Insertion: for some i ∈ {0, . . . , n}, insert a letter a ∈ Σ after position i, obtaining in this
way the string u[1..i] a u[i+ 1..n].

2. Deletion: for some i ∈ {1, . . . , n}, delete the entry u[i] from u, obtaining in this way the
string u[1..i− 1]u[i+ 1..n].

3. Replacement:2 for some i ∈ {1, . . . , n}, replace u[i] with some letter a ∈ Σ distinct
from u[i], obtaining in this way the string u[1..i− 1] a u[i+ 1..n].

We say that a string u ∈ Σ∗ can be edited to a string w ∈ Σ∗ in s steps if there is some
sequence u0, u1, . . . , us of strings in Σ∗ such that for each j ∈ [r], uj is obtained from uj−1 by
the application of one of the three elementary edit operations above and u = u0, w = us.

Definition 3 (Edit Distance). The edit distance between u and w, denoted by ∆(u,w), is defined
as the minimum s such that u can be edited to w in s steps.

Intuitively, the edit distance between u and w is the minimum number of insertions, deletions
and replacements necessary to transform u into w. By classical results, this distance (and related
ones) can be computed efficiently; see [86, 85].
Nevertheless, there is still a problem that needs to be overcome, stemming from the next fact.

Fact 4. Let A = (Q,Σ, δ) be a DFA. Let w ∈ Σ∗ be a synchronizing word for A. Then, each
word in Σ∗wΣ∗ synchronizes A [79, 80].

Fact 4 implies that if we only take edit distance into consideration, then one can obtain
a diverse set {w1, ..., wr} by simply computing a single synchronizing word for A and then by
appending to it sufficiently large suffixes. Although well-defined mathematically, this solution
does not capture the intuitive notion of diversity in an appropriate way. In order to circumvent
this issue, we could instead require that the words in the set are minimal under the infix ordering.
The problem is that the set of infix-minimal synchronizing words of an automaton may still be
infinite, because the infix ordering is not a well-ordering, and therefore, it becomes a challenging
task to even define what good representatives for the space of solutions are.

Remark 5. In general, for a given DFA A, the set of all infix-minimal synchronizing words
for A can be infinite, i.e., if there is an infix-minimal synchronizing word w such that for
some i with 0 < i < |w|, some letter σ is a permutation on δ(Q,w[1..i]), then all words in
w[1..i]σ∗w[i+ 1..|w|] are infix-minimal synchronizing words for A.

We circumvent the issue discussed above by adopting the notion of subsequence minimality.
We say that a word w is a subsequence-minimal synchronizing word for a DFA A if w is syn-
chronizing for A and no proper subsequence w′ of w is synchronizing for A. On the one hand,
one can ensure that the set of subsequence-minimal synchronizing words for an automaton is
finite (see Section 4). On the other hand, subsequence minimality imposes a higher level of
dissimilarity between two words in a prospective subset of solutions, increasing in this way the
representativeness of the set.

Definition 6 (Synchronization Diversity). Let A = (Q,Σ, δ) be a DFA. We say that a set of
words {w1, . . . , wr} has synchronization diversity k if the following two conditions are satisfied.

1. For each i, j ∈ {1, ..., r} with i ̸= j, ∆(wi, wj) ≥ k.

2. For each i ∈ {1, ..., r}, wi is a subsequence-minimal synchronizing word for A.
2This operation is also sometimes called change or substitution in the literature. In the case of binary

alphabets, it was introduced as reversal in [57], but this wording is quite ambiguous in the literature on Formal
Languages and hence avoided here.
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4 Subsequence Minimality

The next well-known lemma, whose proof can be found in [41, Corollary 18], states that, given
an NFA A, one can construct a finite automaton Subseq(A) accepting precisely the subsequences
of words in L(A). As shown in [41, Lemma 19], this bound cannot be improved in general.

Lemma 7 (Subsequence Automaton). Let A = (Q,Σ, δ) be an NFA. One can construct in time
O(|A|) an NFA Subseq(A) with |Q| states with L(Subseq(A)) = {u : ∃w ∈ L(A), u ≤ w}. If
A has a trap state, Subseq(A) has |Q| − 1 states.

A classic result in partial order theory, known as Higman’s Lemma, states that for each
finite set Σ, the set Σ∗ of finite words over Σ is well-ordered under the subsequence order [47].
An interesting consequence of this lemma is the fact that for each language L ⊆ Σ∗, the set
of subsequence-minimal words in L is finite. For a more language-theoretic treatment, refer
to [43].

Lemma 8 (Higman’s Lemma). Let Σ be an alphabet and L ⊆ Σ∗. There is a unique finite set
S ⊆ L satisfying the following properties.

1. For each word w ∈ L, some word u ∈ S is a subsequence of w.

2. Each word u ∈ S is subsequence-minimal for L.

It is worth noting that Lemma 8 holds with respect to any language L ⊆ Σ∗, irrespectively of
whether L is regular or not. Nevertheless, if L is indeed regular and we are given an automaton A
accepting L, then we can construct a DFA MinSubseq(A) accepting the set of subsequence-
minimal words for L.

Lemma 9 (Subsequence-Minimal Words [11]). Let A = (Q,Σ, δ) be a DFA. One can construct
in time O(2|Q| · |A|) a DFA MinSubseq(A) with at most |Q| · 2|Q| many states accepting the
language

L(MinSubseq(A)) =
{u : u ∈ L(Subseq(A)) and ∀w ∈ L(Subseq(A)), w ̸< u}.

Interestingly, the exponential blow-up in the number of states of the input automaton A is
unavoidable, even if one allows MinSubset(A) to be an NFA. Here, we refer to Example 3.18,
Facts 3.19 and 3.20 in [11].

The next lemma states that given an automaton A, one can construct a DFA Sync(A)
accepting precisely the words in Σ∗ that are synchronizing for A. It is shown by using the
classical subset construction, now on a DFA A; see [75, 84].

Lemma 10 (Synchronizing Words). Let A = (Q,Σ, δ) be a DFA. One can construct in time
O(2|Q| · |A|) a DFA Sync(A) with at most 2|Q| states such that

L(Sync(A)) = {u : u is synchronizing for A}.

It was unknown until very recently [49] if this exponential blow-up is necessary, but it is
indeed unavoidable. By combining Lemma 10 with Lemma 9, we have the following corollary
stating that, given a DFA A, one can construct a DFA SyncMinSubseq(A) of state complexity at
most double-exponential in the state complexity of A accepting the set of subsequence-minimal
synchronizing words for A. It seems to be an interesting open question if this double-exponential
blow-up is necessary.
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Corollary 11. Let A = (Q,Σ, δ) be a DFA. One can construct in time O(22
|Q| · 2|A|) a DFA

SyncMinSubseq(A) with at most 22
|Q|+|Q| many states accepting the language

L(SyncMinSubseq(A)) =
{u : u is a subsequence-minimal synchronizing word for A}.

Proof. Namely, given the DFA A = (Q,Σ, δ), we first construct an automaton Sync(A) accepting
all synchronizing words of A according to Lemma 10 in time O(2|Q| · |A|). Sync(A) = (Q′,Σ, δ′)
has at most 2|Q| many states. By Lemma 9, from Sync(A) we can construct SyncMinSubseq(A) =

(Q′′,Σ, δ′′) in time O(2|Q
′| · |Sync(A)|) = O(22

|Q| · |Sync(A)|) with at most |Q′| ·2|Q′| = 2|Q| ·22|Q|

many states.

5 Edit Distance vs Diversity of Solutions

Wagner and Fischer [86] gave a dynamic-programming algorithm that efficiently computes the
edit distance between two given strings. Further details can be found in [85]. This and similar
questions are an active area of study until today, as exemplified by [13]. On an intuitive
level—ignoring technicalities—the following lemma can be interpreted as an automata-theoretic
counterpart of such computations.

Lemma 12. Let Σ be an alphabet and k ∈ N>0. There is an NFA Edit<(Σ, k) with 2O(k log |Σ|)

many states accepting the following language.

L(Edit<(Σ, k)) =
{
u⊗ w ∈

(
(Σ ∪ {□})×2

)∗
: ∆(u,w) < k

}
. (1)

Proof. Let u and w be strings in Σ+. If ∆(u,w) < k, then it should be clear that ||u| − |w|| ≤
k− 1, since otherwise, we would need to insert and delete a total of at least k symbols to make
the strings have the same length. In order to define an automaton that accepts precisely those
strings of the form u⊗w for which ∆(u,w) < k, we define an NFA that simulates the behavior
of a two-head automaton, one reading the string u (the first string) and the other reading the
string w (the second string). We keep track of the edit operations on u that are necessary to
turn u into w. In other words, we keep track of the changes on u and just check against w.

At each step, if the first head is at position m and the second head is at position m′. If
m′ > m, then the automaton keeps in memory the string x = u[m..m′] comprising of the
symbols of the first string from position m to position m′. On the other hand, if m′ < m, then
the automaton keeps track of the string x = w[m..m′] comprising the symbols of the second
string from positions m to position m′. If m = m′, we have x = ε. In any case, we have that
|x| is always smaller than k. We proceed with a formal definition of our automaton, where we
store not only x in the states, but also a bit b telling in which of the two cases we are, as well
as a counter keeping track of the number of edit operations.

We let Edit<(Σ, k) = (Q, (Σ ∪ {□})×2, δ, F,Q0) be the nondeterministic finite automaton
with set of states Q = Σ<k × {0, 1} × {0, ..., k − 1}, set of initial states Q0 = {(ε, 0, 0)}, and
set of final states F = {ε} × {0, 1} × {0, . . . , k − 1}. We will describe next the elements of
the transition relation δ. Altogether, we define four types of transitions leaving each state
(x, b, j) ∈ Q, depending on whether b = 0 or b = 1.

1. No Edits. If b = 0 and x ̸= ε, then we add (for each a, a′ ∈ Σ with x[1] = a′) a transition
of the form [(x, b, j), (a, a′), (tail(x)a, b, j)]. Intuitively, if the symbol being read by the
first head (i.e., the symbol x[1] of the memory vector) is equal to the symbol being read
by the second head (i.e., the symbol a′), then no edit operation is being performed, and
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hence, the counter remains unchanged. Additionally, the new memory vector is obtained
by dropping its first symbol and then appending the symbol a to it. A similar reasoning
can be applied if b = 1, with exception of the fact that in this case, the memory vector
records positions of the second string, and therefore we add a transition of the form
[(x, b, j), (a, a′), (tail(x)a′, b, j)] for each a, a′ ∈ Σ with x[1] = a. In the special case when
x = ε, irrespectively of b, we have transitions of the form [(ε, b, j), (a, a), (ε, b, j)] for each
a ∈ Σ.

2. Replacement. If b = 0, j < k−1 and x ̸= ε, then we add (for each a, a′ ∈ Σ with x[1] ̸= a′)
a transition of the form [(x, b, j), (a, a′), (tail(x)a, b, j+1)]. Intuitively, if the symbol being
read by the first head (i.e., the symbol x[1] of the memory vector) is different from the
symbol being read by the second head (i.e., the symbol a′), then a replacement operation
is being performed (transforming x[1] into a′), and hence, the counter is increased by 1. As
in the previous case, the new memory vector is obtained by dropping its first symbol and
then appending the symbol a to it. A similar reasoning can be applied if b = 1. As in the
previous item, in this case we add a transition of the form [(x, b, j), (a, a′), (tail(x)a′, b, j)]
for each a, a′ ∈ Σ with a ̸= x[1]. In the special case when x = ε, irrespectively of b, we
have transitions of the form [(ε, b, j), (a, a′), (ε, b, j + 1)] for each a, a′ ∈ Σ with a ̸= a′.

3. Deletion. If b = 0, j < k−1 and x ̸= ε, then we consider the compound input letter (a, a′)
for each a, a′ ∈ Σ and check if there is some i ≤ |x| with x[i] = a′. In this case, assuming
j+ i−1 < k, we can add a transition of the form [(x, 0, j), (a, a′), x[i+1..|x|]a, 0, j+ i−1)].
This means that we delete i−1 symbols from the first string and match the ith symbol of x
against the current input letter a′ of the second string. Notice that there might be multiple
occurrences of a′ within x, and for each of this occurrences, we add a transition, assuming
that we can “afford” this number of deletion operations. It might be also the case that
we (nondeterministically) decide to delete all of x. This may be an option (in particular)
if a′ does not occur in x at all. Clearly, the transitions described in the following are only
added if j + |x| < k. Now, two cases may occur: either, a′ = a, in which case we add
the transition [(x, 0, j), (a, a), (ε, 0, j + |x|)] (which means that we delete all of x from the
first string and then read the compound letter (a, a) in the sense of no edits), or a′ ̸= a,
which adds the transitions [(x, 0, j), (a, a′), (a′, 1, j + |x| + 1)] (which means to delete all
of x from the first string, plus the following letter a) and [(x, 0, j), (a, a′), (ε, 0, j+ |x|+1)]
(which means to delete all of x from the first string, plus replacing the letter a with a′),
assuming j + |x| + 1 < k in both subcases. Here we have an asymmetry with respect to
the case b = 1, since we assume that the edit operations are being done in the first string.
In this case, since the first head is moving right while the second head stays still, the
memory vector gets extended by one position. More specifically, we add a transition of
the form [(x, b, j), (a, a′), (tail(x)a′, b, j + 1)] for each a, a′ ∈ Σ. This also happens if b = 0
and x = ε, leading to transitions of the form [(ε, 0, j), (a, a′), (a′, 1, j + 1)].

4. Insertion. If b = 0 and j < k − 1, then we add (for each a, a′ ∈ Σ) a transition of
the form [(x, b, j), (a, a′), (xa, b, j + 1)]. Intuitively, inserting a symbol at the first string
corresponds to keeping the first head still, while moving the second head one step to the
right. As a consequence, the size of the memory vector increases by one. On the other
hand, as in the previous item, there is an asymmetry with respect to the case b = 1.
In this case, we have to analyze the string x kept in memory. If there is some i with
x[i] = a, then we can insert x[1..i − 1] into u. This leads to a transition of the form
[(x, 1, j), (a, a′), (x[i+ 1..|x|]a′, b, j + i− 1)] for each a, a′ ∈ Σ, assuming j + i− 1 < k. In
the extreme case, we could also decide to insert all that is kept in memory into u. If a = a′,
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then we add a transition of the form [(x, 1, j), (a, a′), (ε, 0, j + |x|)], assuming j + |x| < k.
This means that the whole of x is inserted into u, and moreover, as the compound symbol
(a, a) is read, both heads reading u and w advance. If a ̸= a′, then we add transitions of
the form [(x, 1, j), (a, a′), (a, 0, j+ |x|+1)] and [(x, 1, j), (a, a′), (ε, 0, j+ |x|+1)], assuming
j + |x| + 1 < k. Notice that these more complex rules combine inserting all of x into u
with either inserting a′ into u and hence having to memorize a, or replacing a with a′.

We remark that the Deletion case with b = 0 is dual to the Insertion case with b = 1.
Similarly, the Deletion case with b = 1 is dual to the Insertion case with b = 0. This duality
stems from the fact that when it comes to edit distance, deleting one symbol in one of the
strings is equivalent to inserting the corresponding symbol into the other string.

There are actually further cases when one of the components of the compound letter that
is read equals □. We leave the details of formulating these corner cases to the reader.

Now, we prove that the automaton defined above really accepts precisely the strings of the
form u⊗ w where ∆(u,w) < k. Observe that ∆(u,w) < k if and only if u can be transformed
into w by applying less than k insertions, deletions and replacements. We can describe these
operations by special letters. To this end, consider the new alphabet Γ = Σ ∪Σ′ ∪Σ′′ ∪Σ×Σ,
where Σ′ (or Σ′′, respectively) contains primed (or double-primed, respectively) variants of all
letters from Σ. Furthermore, define the morphisms h1 : Γ

∗ → Σ∗ and h2 : Γ
∗ → Σ∗ by

h1(a) =


a, if a ∈ Σ
b, if a = (b, c) ∈ Σ× Σ
b, if a = b′ ∈ Σ′

ε, if a = b′′ ∈ Σ′′

and h2(a) =


a, if a ∈ Σ
c, if a = (b, c) ∈ Σ× Σ
ε, if a = b′ ∈ Σ′

b, if a = b′′ ∈ Σ′′

Now, any word z ∈ Γ∗ describes how to change u = h1(z) into w = h2(z) by using as
many edit operations as there are letters from Σ′ ∪ Σ′′ ∪ Σ × Σ in z. As we can formally
associate a transducer τA to the NFA A described above that simply outputs the protocol of
edit operations it performed on u, with the additional property that the counter of the NFA is
incremented if and only if an edit operation from Σ′ ∪Σ′′ ∪Σ×Σ is output at this point by the
transducer, we can see that the NFA A accepts word u ⊗ w : ∆(u,w) < k. Conversely, any
word z ∈ Γ∗ with less than k letters from Σ′ ∪ Σ′′ ∪ Σ× Σ can be viewed as the output of the
constructed transducer τA, protocolling less than k insertions, deletions or replacements, so that
h1(z)⊗ h2(z) ∈ L(A) holds. A detailed inductive proof is now a tedious but easy exercise.

It is helpful for understanding the previous reasoning by looking at a simple example: Let
u = ababbaca and w = aabbabbba. Define z = ab′′abba(c, b)b′b′a. Here, red letters are deleted
from u, blue letters should be inserted into u, and green letter pairs indicate replacements.
Then, h1(z) = u and h2(z) = w. The NFA will sequentially execute the following transitions
when digesting

u⊗ w = (a, a)(b, a)(a, b)(b, b)(b, a)(a, b)(c, b)(a, b)(□, a) :

[(ε, 0, 0), (a, a), (ε, 0, 0)] [(ε, 0, 0), (b, a), (a, 1, 1)] [(a, 1, 1), (a, b), (b, 1, 1)]
[(b, 1, 1), (b, b), (b, 1, 1)] [(b, 1, 1), (b, a), (a, 1, 1)] [(a, 1, 1), (a, b), (b, 1, 1)]
[(b, 1, 1), (c, b), (b, 1, 2)] [(b, 1, 2), (a, b), (a, 0, 4)] [(a, 0, 4), (□, a), (ε, 0, 4)]

The last transition also illustrates how to deal with reading □, at least in this special case of
no edits.

As a corollary of Lemma 12, by first determinizing the automaton of the previous lemma
and then (basically) complementing final states, plus checking (by a product automaton con-
struction) that words come from convolutions of words, using Lemma 1, we get the following
result.
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Lemma 13. Let Σ be an alphabet and k ∈ N>0. There is a DFA Edit≥(Σ, k) with 22
O(k log |Σ|)

states accepting the following language.

L(Edit≥(Σ, k)) =
{
u⊗ w ∈

(
(Σ ∪ {□})×2

)∗
: ∆(u,w) ≥ k

}
. (2)

Let W ⊆ Σ∗ be a finite set of strings. The min-diversity of W , denoted by MinDiv(W ) is
defined as the minimum edit distance among any pair of strings in W .

MinDiv(W ) = min
u,w∈W

∆(u,w) (3)

The following lemma states that given DFA A, one can construct DFA MinDiv(A, k) whose
language is a suitable encoding of all r-tuples of words in L(A)r with diversity at least k.

Lemma 14. Let A = (Q,Σ, δ, q0, F ) be DFA over Σ. For each r, k ∈ N+, one can construct a

DFA MinDiv(A, r, k) with 2r
2·2O(k·log |Σ|) · |Q|r many states accepting the language

{u1 ⊗ · · · ⊗ ur ∈ (Σ ∪ {□})×r : ∀i ∈ [r](ui ∈ L(A)) ∧MinDiv({u1, . . . , ur}) ≥ k}.

Its construction takes O
(
2r

2·2O(k log |Σ|) · |A|r
)
time.

Proof. Let
(
[r]
2

)
= {{i, j} : i, j ∈ [r], i ̸= j}. For each pair {i, j} ∈

(
[r]
2

)
, let Edit≥i,j(Σ, k) be the

automaton that accepts all strings of the form u1⊗u2⊗· · ·⊗ur where for each l ∈ [r], ul ∈ Σ+ and
∆(ui, uj) ≥ k, based on Lemma 13. Let Ar be the automaton accepting the set of all strings of
the form u1⊗u2⊗· · ·⊗ur where for each l ∈ [r], ul ∈ L(A). Then, MinDiv(A, r, k) can be defined
as the automaton that accepts the intersection of the languages L(Ar) with all the languages
L(Edit≥i,j(Σ, k)) for {i, j} ∈

(
[r]
2

)
. This implies that the number of states in MinDiv(A, r, k) is

at most the product of the number of states of Ar with the number of states of Edit≥i,j(Σ, k))

for all {i, j} ∈
(
[r]
2

)
. According to Corollary 2, the DFA Ar has at most (2|Q|)r + 1 states. Its

construction costs O(|A|r) time. We claim below that one can define Edit≥i,j(Σ, k)) in such a

way that it has at most 22
O(k log |Σ|)

states. As a consequence, one can construct MinDiv(A, r, k)

in such a way that it has at most ((2|Q|)r + 1) ·
(
22

O(k log |Σ|)
)([r]2 )

= 2r
2·2O(k log |Σ|) · |Q|r many

states. Its construction takes O(2r
2·2O(k log |Σ|) · |A|r) time.

Let ρi,j : Σ×k → Σ×2 be the map that sends each tuple (a1, a2, . . . , ar) to the pair (ai, aj).

Then, the automaton Edit≥i,j(Σ, k) can be defined as the automaton that accepts the inverse

homomorphic image of L(Edit≥(Σ, k)) under ρi,j . More specifically, the automaton Edit≥i,j(Σ, k)

is constructed from Edit≥(Σ, k) by replacing each transition (q, (a, b), q′) with the set of transi-
tions {(q, (a1, . . . , ar), q′) : (a1, . . . , ar) ∈ Σ×r, ai = a, aj = b}. Note that since no new states

are created, the number of states in Edit≥i,j(Σ, k) is equal to the number of states in Edit≥(Σ, k),

that is, 22
O(k log |Σ|)

(Lemma 13).

6 Algorithmic Results

In this section we state and prove our main results, starting with two simple facts.

Proposition 15 (Single-Word Automaton). Let Σ be an alphabet, w ∈ Σ∗ and A(w) be the
minimal deterministic finite automaton accepting {w}. Then, A(w) has |w|+ 2 states.
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Proof. Let A(w) = (Q,Σ, δ, q0, F ) be the DFA defined by setting Q = {q0, q1, . . . , q|w|+1},
F = {q|w|}, and δ = {(qi−1, w[i], qi) : i ∈ [|w|]} ∪ {(qi−1, a, q|w|+1) : i ∈ [|w|], w[i] ̸=
a} ∪ {(q|w|+1, a, q|w|+1) : a ∈ Σ}. Then, it should be clear that A(w) accepts w and no other
string. Minimality follows from the fact that the language {w} splits the set Σ∗ into |w| + 2
Myhill-Nerode equivalence classes.

In combination with Lemma 7, we obtain the following result.

Corollary 16. Let w ∈ Σ∗. Then, the NFA Subseq(A(w)) has |w|+ 1 states.

After these preparatory results, let us move on to questions that are more directly related
to our discussions on diversity in synchronization. The next algorithmic result is interesting,
because we prove intractability of the corresponding decision problem in Theorem 22 below. We
can interpret the following theorem also as a statement about FPT-membership of this problem
with respect to the parameter |Q|, the number of states of the given DFA A.

Theorem 17. Let A = (Q,Σ, δ, q0, F ) be a DFA. Given a word w ∈ Σ+, one can determine in
time O(2|Q| · |w| · (|A| + log |w|)) whether w has a subsequence that is synchronizing for A. If

yes, in time O(2|Q| · |w|2 · (|A|+ log |w|)), or alternatively, in time O(22
|Q| · 2|A| · |w| · log(|w|)),

one can even construct a subsequence-minimal synchronizing word for A that is a subsequence
of w.

Notice that the two algorithmic variants allow us to trade-off long words w against relatively
large automata A.

Proof. Let Subseq(A(w)) be the NFA of Corollary 16 with |w| + 1 states accepting all subse-
quences of w. Let Sync(A) be the automaton accepting all words that are synchronizing for A.
By Lemma 10, this DFA has O(2|Q|) states and can be constructed in time O(2|Q||A|). Then, w
has some subsequence that is synchronizing for A if and only if L(Subseq(A(w)))∩L(Sync(A)) ̸=
∅, a condition that can be verified in time O(2|Q||w|(|A|+ log |w|)) by first constructing a prod-
uct automaton (here, an NFA), and then by performing a reachability test. In the same time
bound, we can find some u ∈ L(Subseq(A(w))) ∩ L(Sync(A)) (if it exists).

For the last part, suppose that the intersection above is non-empty. Then, w also con-
tains a subsequence-minimal synchronizing word for A. Using Lemma 9, we can construct
an automaton MinSync(A) that accepts the language of all synchronizing words of A that do
not contain any subsequence that is also synchronizing for A. This construction takes time
O(22

|Q| · |Sync(A)|) = O(22
|Q| ·2|A|). Observe that MinSync(A) has at most O(22

|Q| ·2|Q|) states.
Hence, it is enough to output any word in the language L(MinSync(A)) ∩ L(Subseq(A(w))).

Since MinSync(A) has O(22
|Q| · 2|Q|) states and A(w) has |w| + 1 states, we have that one

can find a word in the intersection of the languages accepted by these automata in time
O(22

|Q| · 2|Q| · |w| log(|w|)).
Alternatively, we can obtain an algorithm running in time O(2|Q| · |w|2 · (|A| + log |w|)) as

follows. Above, we described how to test whether L(Subseq(A(w)))∩L(Sync(A)) is non-empty.
If the intersection is empty, then w has no subsequence that is synchronizing for A. In the
other case, such a subsequence exists. Let w↓i = w[1..i− 1]w[i+1..|w|]. If L(Subseq(A(w↓i)))∩
L(Sync(A)) = ∅ for every i ∈ [|w|], then we know that w is a subsequence-minimal synchronizing
word for A. Otherwise, if this intersection is non-empty for some i, then we know that w↓i

contains a subsequence-minimal synchronizing word for A. We then update w to w↓i, and
repeat the process described in this paragraph. The algorithm operates in time O(2|Q| · |w|2 ·
(|A| + log |w|)), since we need to delete at most |w| letters, and at each deletion, one needs
O(2|Q| · |w| · (|A|+ log |w|)) steps to determine if L(Subseq(A(w↓i))) ∩ L(Sync(A)) ̸= ∅.
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In our next result we deal with the problem of finding a sufficiently diverse set W of
subsequence-minimal synchronizing words for an automaton A that satisfy an additional con-
straint. More specifically, we require that each word in W belongs to the language of an
automaton B given at the input. In this setting, A may be regarded as the specification of
a system (say a robot) that interacts with an environment. Here, B models the set of all se-
quences of actions that are legal in the environment. The requirement that W ⊆ L(B) ensures
that the synchronizing words under consideration correspond to sequences of actions that are
legal in the environment. Note that it makes sense to assume that A is fixed (say, a robot of
a certain model), and that the environment may vary (e.g., the environment where the robot
will be deployed). The next theorem analyzes the computational complexity of this problem
parameterized by the diversity parameters r and k. Since A is assumed to be fixed, in the
statement of the theorem we hide the dependencies on the DFA A in the function fA.

Theorem 18. Let A = (Q,Σ, δ) be a DFA and B = (Q′,Σ, δ′, Q′
0, F

′) be an NFA. One can
determine in time O(fA(r, k) · |Q′|r log(|Q′|)) whether there is a set W ⊆ L(B) with r strings
such that each word in W is subsequence-minimal synchronizing for A and MinDiv(W ) ≥ k.

Proof. By combining Corollary 11 with Lemma 14, we can construct a DFA A′ accepting the
language of all compound words u1 ⊗ · · · ⊗ ur ∈ (Σ ∪ {□})×r such that for each i ∈ [r], ui is
a subsequence-minimal synchronizing word for A, and MinDiv({u1, . . . , ur}) ≥ k. The DFA A′

has 2r
2·2O(k·log |Σ|) ·(2|Q|)r many states and can be constructed in time 2r

2·2O(k·log |Σ|) ·(2|Q|·|Σ|·|Q|)r.
Conversely, again by an (r + 1)-fold product automaton construction, also using Lemma 1 and
Corollary 2, an NFA B′ with (2|Q′|)r + 1 many states can be constructed that accepts the
language

{u1 ⊗ u2 · · · ⊗ ur : ∀i ∈ [r](ui ∈ L(B))} .

Checking if the product automaton C of A′ and B′ accepts any compound words solves the
proposed problem. This again amounts to reachability testing. This final check takes time
linear in the size of C, which is hence

O
(
2r

2·(|Q|+2O(k·log |Σ|)) · |Q′|r ·
(
r log(|Q′|) + (r2 · (|Q|+ 2O(k·log |Σ|))) + |Σ|r

))
.

Sorting these terms, we get the claim with a suitably defined function fA(r, k).

Actually, the previous result can be viewed as a diversity result concerning synchronization
under regular constraints as introduced in [30]. This variation of the classical synchronization
theme comes in with the constraint automaton B, but by setting L(B) = Σ∗, we get back to
the classical theme.

Furthermore, as a direct consequence of Theorem 18 and Corollary 16 in combination with
Lemma 7, we have that the problem of finding a set of sufficiently diverse subsequences of a
word w that are subsequence-minimal synchronizing words for A can be solved by an algorithm
with an FPT dependency on the parameters A (i.e., |Q| and |Σ|) and k and an XP dependency
on the parameter r.

Corollary 19. Let A = (Q,Σ, δ) be a DFA and w be a word in Σ∗. One can determine in time
O(fA(r, k) · |w|r log(|w|)) whether there is a set W = {w1, . . . , wr} of subsequences of w such
that each word in W is subsequence-minimal synchronizing for A and MinDiv(W ) ≥ k.

Remark 20. The reader might have wondered why we allowed a certain asymmetry in the
formulation of Theorem 18 between the automata A and B, requiring the first one to be a DFA
and allowing the second one to be an NFA. There are at least two reasons for doing so: (a) We
consider Corollary 19 as being quite interesting, and here B being an NFA is important because
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of Lemma 7 that is the basis of Corollary 16, as here an NFA accepting all subsequences of w
is produced, basically by nondeterministically guessing which parts of the word w are read. (b)
Turning A into an NFA is possible in principle, in particular, as we consider the automaton A
to be fixed in the interpretation of our results from the viewpoint of fixed-parameter tractability.
However, there are some subtleties concerning the very definition of synchronizing words in the
case of NFA; we only refer to [35, 50]. We wanted to avoid diving into these details in this
paper.

7 Hardness Results

Below we show that the very basic problem of determining whether a given word is subsequence-
minimal synchronizing for a given automaton A is already coNP-hard.

Definition 21 (Min-SubSequence-SW).
Given: DFA A = (Q,Σ, δ) and a word w ∈ Σ∗ synchronizing A.
Question: Is w a minimal synchronizing word with respect to the subsequence order?

Theorem 22. Min-SubSequence-SW is coNP-complete, even for DFAs over a binary input
alphabet.

This hardness result (and even more the hardness result for the counting class #P that we
prove as our third main result of this section below in Theorem 29) explains why we have to
develop exponential-time algorithms for the suggested diversity problems.

We prove the hardness claim by a reduction from Hitting Set to the complementary
problem of Min-SubSequence-SW which asks for the existence of a smaller subsequence of
w which is synchronizing.

Definition 23 (Hitting Set).
Given: Collection C of non-empty subsets of a finite set S and integer k.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k such that for all c ∈ C, S′ ∩ c ̸= ∅?

Proof. For membership in coNP, we also consider the complementary problem. Hence, given w,
we first check if w is synchronizing at all. If not, it cannot be minimal synchronizing. If it is,
we guess a subsequence of w and check again if it is synchronizing. This proves memberhip in
NP of the complementary problem.

For the coNP-hardness, we argue as follows. Let C = {c0, c1, . . . , cm−1} be a collection of
subsets of S = {s0, s1, . . . , sn−1}, and k ∈ N. We construct from C, S, k a DFA A = (Q, {a, b}, δ)
as follows. We set Q = C×(S∪{sn})× [k+1]∪qsync. To underline the set-theoretic nature of all
states but qsync, we also talk about state-tuples in the following. The DFA A will consist of |C|
many chains leading to the synchronizing state qsync which are not connected to each other.
Each chain consists of k many listings of the elements in S such that for each element s ∈ S
which appears in the corresponding subset c, it is possible to shortcut the chain at the nodes
corresponding to s. More formally, we define δ as follows. For ci ∈ C, sj ∈ S and l ∈ [k + 1]
we set δ((ci, sj , ℓ), a) = (ci, sj+1, ℓ) if j < n and δ((ci, sj , ℓ), a) = (ci, sj , ℓ) if j = n. For the
letter b we set δ((ci, sj , ℓ), b) = qsync if sj ∈ ci. Otherwise, we set δ((ci, sj , ℓ), b) = (ci, s0, ℓ) if
j < n and δ((ci, sj , ℓ), b) = (ci, s0, ℓ + 1) if j = n and ℓ ≤ k. For j = n and ℓ = k + 1 we set
δ((ci, sj , ℓ), b) = qsync. For the state qsync we set δ(qsync, a) = δ(qsync, b) = qsync.

As the input synchronizing word, we set w = (anb)k+1.
Clearly, w is a synchronizing word for A as it simply traverses through the chains in parallel

without the attempt of taking a shortcut. Note that before the first symbol b is read, each
segment listing the set S has multiple active states from which some have sn in the second

14



entry of the state-tuple. Hence, the first letter b cannot bring all active states of a chain to the
synchronizing state qsync and can only have the effect of resetting all chains to state-tuples with
element s0 in the second component.

If w contains a shorter synchronizing subsequence, we can find one by removing a’s. In fact,
we can only find a synchronizing subsequence with fewer b’s if the instance specified by C, S
even admits a hitting set of size < k.

First, assume S′ = {si1 , si2 , . . . , siℓ} is a hitting set for C of size |S′| ≤ k. Then, the word
ws = bai1bai2b . . . aiℓb is a synchronizing word for A and a subsequence of w with |ws| < |w|.
After reading a b (and especially after reading the initial b) the active states of all chains have s0
in the second position of their state-tuple. Hence, the word ws maps the active states of some
chain corresponding to the set ci to some states {(ci, sj , h) : h ≤ k + 1} for which sj ∈ ci and
sj ∈ S′. These states are then mapped to qsync with a letter b.

For the other direction, assume ws is a subsequence of w and a synchronizing word for A
with |ws| < |w|. W.l.o.g., we can assume that ws starts with b, as the first a’s are only making
noticeable progress towards qsync if we do not try to make shortcuts with the letter b, because
every shortcut throws the active states of chains, which cannot use this shortcut, back to the
last state with s0 in the second component. Hence, note that if we take any shortcut for some
chain to reach the sync-state, then all states must be mapped to the sync-state via a shortcut.
Since w is the shortest synchronizing word which does not use a shortcut, we conclude that ws

uses shortcuts and hence all chains must reach qsync via shortcuts. As argued above, the first b
cannot map all active states of a chain to the sync-state. Collecting the second components of
active states before each succeeding letter b then gives a hitting set for C, as each chain must
be left via a shortcut.

Recall that above, in Theorem 17 we proved that Min-SubSequence-SW, parameterized
by the number of states of the input DFA, belongs to FPT.

The following result explains also to some extent why the problems that we consider in
this paper are computationally hard ones. Note that in the classical setting, length-minimal
synchronizing words (if existent at all) are of polynomial size only [84]. Requiring subsequence-
minimality instead of length-minimality changes the picture drastically, as then some synchro-
nizing words with this additional property can be of exponential length.

Proposition 24. Some subsequence-minimal synchronizing words can be of exponential length,
even for DFAs with a ternary input alphabet.

Proof. Let P = {p1, p2, . . . , pk} be a set containing the first k prime numbers and let A be a
unary DFA over the letter a consisting of a synchronizing state qsync and k independent cycles
where the ith cycle have length pi. Then, enhance A with two more letters b and c, where b
maps all states of a cycle to one single state on this cycle and c takes the predecessor under
the letter a of this state to some designated synchronizing state and is the identity on all other
states. Figure 1 represents A for k = 3. More formally, A = (Q, {a, b, c}, δ) is defined as follows:
Q = {qsync} ∪ {qi,j : i ∈ [k], j ∈ [pi]}, for all i ∈ [k] and j ∈ [pi], δ(qi,j , a) = qi,(j+1) mod pi ,
δ(qi,j , b) = qi,1, δ(qsync, a) = δ(qsync, b) = δ(qsync, c) = qsync, for i ∈ [k] and j ∈ [pi − 1],

δ(qi,j , c) = qi,j and δ(qi,pi , c) = qsync. By definition of δ, A is deterministic. Let Pk =
∏k

i=1 pi.
Then, w = baPk−1c is a synchronizing word for A. As qsync is a trap state, it must be the
synchronizing state of A and hence any possibly synchronizing subsequence of w must end in c.
By the choice of the prime numbers, all states on all cycles can only be synchronized after Pk

steps, and in order to have a clear starting point, we need the letter b at the beginning, i.e., no
proper subsequence of w is synchronizing.
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Figure 1: Automaton A constructed in the proof of Proposition 24 for k = 3.

Remark 25. The previous construction also implies that infix-minimal synchronizing words
can be of exponential size.

For binary input alphabets, we do not have an example, while for unary alphabets, observe
that subsequence-minimality is the same as length-minimality, so that we cannot expect to find
subsequence-minimal synchronizing words of exponential length in that case.

Next, we define two further combinatorial questions, which are in fact the central problems
of our study. In the last section, we showed some algorithmic results that can be viewed as
exponential-time algorithms for these problems. The fact that these algorithms exceed polyno-
mial time is (with hindsight) justified by the hardness results that we will prove in the following.

Definition 26 (Diversity-Sync).
Given: DFA A = (Q,Σ, δ) and k ∈ N, encoded in binary.
Question: Is there a set W = {w1, w2, . . . , wr} of subsequence-minimal synchronizing words
for A such that

∑
1≤i<j≤r ∆(wi, wj) ≥ k?

A natural variant of the problem above is obtained when we ask for a set of subsequence-
minimal synchronizing words of some minimal cardinality and neglect the diversity of the set.
Note that the condition that the words are subsequence-minimal implies that the words have a
pairwise distance greater than one.

Definition 27 (Card-Sync).
Given: DFA A = (Q,Σ, δ) and r ∈ N, encoded in binary.
Question: Is there a set W = {w1, w2, . . . , wr} of subsequence-minimal synchronizing words
for A?

With a slight adaption of the previous construction, we show in the following that the
problems Diversity-Sync and Card-Sync are NP-hard.

As we have shown in Theorem 22, verifying the subsequence minimality of a synchronizing
word is coNP-hard and hence the problem is unlikely to be contained in NP, because we cannot

16



use a guess & check approach. Further, for binary encoded parameters k and r, we obtain
coNP-hardness from the reduction in Theorem 22 and hence should at least climb to ∆P

2 in the
polynomial-time hierarchy for a membership attempt. Note that the NP-hardness shown below
does not require binary parameters k and r, whereas coNP-hardness does (so far).

Theorem 28. The problems Diversity-Sync and Card-Sync are NP-hard.

Proof. We give a reduction from the Hitting Set problem and adapt the construction of
Theorem 22. We add to each chain ci n new states (ci, [j]) with j ≤ n. For these states, we
set δ((ci, j), a) = (ci, j + 1) for j < n and δ((ci, n), a) = (ci, sn, 1). For the letter b we set
δ((ci, j), b) = (ci, j). From the previously defined transitions we redefine the transitions for b
if sj ̸= sn to the identity, i.e., we set δ((ci, sj , ℓ), b) = (ci, sj , ℓ). We further introduce a new
letter c which acts as follows. For sj ̸= sn we set for sj ∈ ci, δ((ci, sj , ℓ), c) = qsync and for
sj ̸= sn, sj /∈ ci we set δ((ci, sj , ℓ), c) = (ci, j + 1). For all other states, c acts as the identity.

The critical observation is that synchronizing words which use shortcuts will have the form
anbai1can−i1bai2can−i2b . . . aiκc and contain w = (anb)k+1 as a subsequence if κ > k and are
hence not minimal. Therefore, setting the diversity lower bound to one and requiring r = 2 (i.e.,
two elements should be contained in the diverse set) concludes the reduction as the instance C,
S has a hitting set of size at most k if and only if there are at least two subsequence-minimal syn-
chronizing words for the constructed automaton, namely a listing anbai1can−i1bai2can−i2b . . . aiℓc
of the hitting set and the word w = (anb)k+1.

We show in the next theorem that it is #P-hard to compute the maximal diversity of the
set of subsequence-minimal synchronizing words for a given DFA A.

Theorem 29. Let A be a DFA. Then, on input A, computing the diversity of the set of all
subsequence-minimal synchronizing words of A is #P-hard.

Proof. We give a reduction from 3-CNF SAT to the subsequence-minimal synchronization
problem and show that the number of satisfying variable assignments for some 3-CNF for-
mula φ can be extracted from the diversity of a maximal set of subsequence-minimal syn-
chronizing words for the constructed automaton. Hence, by computing the diversity of the
set LMinSync(A) of all subsequence-minimal synchronizing words of A, we would also be able
to compute the number of satisfying assignments for φ. The reduction is an adaption of the
construction for the short synchronizing word problem by Eppstein and Rystsov [28, 73].

Let φ = {c1, c2, . . . , cm} be a Boolean formula in 3-CNF over the set of variables V =
{x1, x2, . . . , xn}. The idea of the construction is to represent each clause by a chain of states
leading into a single sink-state. Each subsequence-minimal synchronizing word will contain
a subsequence of 0’s and 1’s which corresponds to a variable assignment of the variables
x1, x2, . . . , xn, in this order. If a clause is satisfied by the assignment of some variable, then
the letter corresponding to this assignment will shortcut this chain into the sink-state. There-
fore, subsequence-minimal synchronizing words that correspond to satisfying assignments will
be shorter than those corresponding to unsatisfying assignments. In order to avoid that a
satisfying assignment might be a subsequence of a synchronizing word corresponding to an un-
satisfying assignment, we separate the 0’s and 1’s corresponding to variable assignments in a
synchronizing word by a sequence of n many letters a, each. This will allow us to extract the
number of satisfying assignments from the diversity of LMinSync(A).

We now give the details of the construction. It might be beneficial to consider Figure 2
while following the details. We construct from φ a DFA A = (Q, {0, 1, a}, δ) where Q is defined
as Q = {qsync}∪ (φ∪{∅})× (V ∪{xn+1})×{0, 1, . . . , n}\{∅}×{xn+1}×{n}. For the transition
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function δ, we define δ(qsync, σ) = qsync for all σ ∈ {0, 1, a}. For the other states, we define

δ((ci, xj , k), 0) =


(ci, xj , k) if k ̸= n,

(ci, xj+1, 0) if k = n ∧ j ≤ n ∧ ¬xj /∈ ci,

qsync otherwise

δ((ci, xj , k), 1) =


(ci, xj , k) if k ̸= n,

(ci, xj+1, 0) if k = n ∧ j ≤ n ∧ xj /∈ ci,

qsync otherwise

δ((ci, xj , k), a) =


(ci, xj , k) if k = n,

(ci, xj , k + 1) if k ̸= n ∧ (ci, xj , k) ̸= (∅, xn+1, n− 1)

qsync otherwise

Note that due to the chain corresponding to the artificial clause ∅, each synchronizing
word must have length at least (n + 1)2 − 1. Further, note that every word in the language
(an{0, 1})nan maps all states of A into a subset of {qsync}

⋃
ci∈φ{(ci, xn+1, n)}. Hence, every

word in the language (an{0, 1})n+1 is synchronizing but not necessarily subsequence-minimal.
In contrast, every synchronizing word in (an{0, 1})nan is a subsequence-minimal synchronizing
word.

After the prefix an all states of A are mapped into the set {qsync}
⋃

ci∈φ,j≤n+1{(ci, xj , n)}.
Hence, the only states which might not be mapped to qsync by a word from (an{0, 1})nan are
the n + 1 leftmost states of each chain (corresponding to ci), which are mapped to the state
(ci, x1, n) after reading an.

If β : V → {0, 1} is a variable assignment that satisfies a clause ci ∈ φ, then the word
w = anβ(x1)a

nβ(x2) . . . a
nβ(xn)a

n maps all states in the chain corresponding to the clause ci to
the sink-state qsync as then, the sub-word β(x1)a

nβ(x2) . . . a
nβ(xn)a

n maps the state (ci, x1, n)
directly to qsync via a short-cut transition corresponding to the first satisfied literal in ci. There-
fore, w is a subsequence-minimal synchronizing word for A if and only if β is a variable assign-
ment that satisfies each clause in φ.

If β does not satisfy some clause ci, then w is not a synchronizing word for A, since the state
(ci, x1, 0) is mapped to (ci, xn+1, n) by w and not to qsync, as no short-cut transition was taken
in the chain ci by w. Then, both words w0 and w1 are subsequence-minimal synchronizing
words for A as deleting some letters from w cannot change the variable assignment encoded
in w, since two positions encoding variable assignments in w are n letters apart and deleting
more than one letter from w0 or w1 would result in a word of length less than (n + 1)2 − 1
which is hence not synchronizing.

Next, we consider the diversity of the set of all subsequence-minimal synchronizing words
LMinSync(A) of A. Note that LMinSync(A) ⊆ (an{0, 1})nan{0, 1, ϵ} as any other synchroniz-
ing word u would cause the automaton to stall somewhere, i.e., u would contain a position i
such that δ(Q, u[1..i]) = δ(Q, u[1..i + 1]), implying that the letter at position i + 1 could be
removed from u, thus yielding a shorter synchronizing word being a subsequence of u. Hence,
we can split the set LMinSync(A) into the disjoint sets sat-LMinSync(A) ⊆ (an{0, 1})nan and
unsat-LMinSync(A) ⊆ (an{0, 1})n+1. As discussed earlier, if β is an unsatisfying variable as-
signment, then both words

anβ(x1)a
nβ(x2) . . . a

nβ(xn)a
n0 and anβ(x1)a

nβ(x2) . . . a
nβ(xn)a

n1

are subsequence-minimal synchronizing words. Further, each string in (an{0, 1})nan will appear
as a prefix of some word in LMinSync(A).
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Note that the edit distance of two words w1 and w2 in LMinSync(A) is at most n + 1 and
that w1 and w2 can only differ at the positions i · (n + 1) for 1 ≤ i ≤ n + 1. Due to the block
of a’s of length n between any of those positions, a shortest edit sequence that transforms w1

into w2 consists of changing directly the letters at the positions i · (n+1) only. Any other type
of edit sequence would demand to delete at least one block of a’s (costing n edit operations)
and inserting again a block of a’s at some other position (costing n edit operations).

As each string in (an{0, 1})nan will appear as a prefix of some word in LMinSync(A), we
first compute the sum of Hamming distances of the set of binary strings of length exactly n.
There are 2n many binary strings of length n. For each position 1 ≤ i ≤ n, exactly half of
the strings have a 0 at position i and the other half have a 1 at position i. Each of the 2n/2
strings with a 0 at position i adds to the total Hamming distance for this position a weight of
value 1 for each of the 2n/2 many strings with a 1 at position i. Summing over all n positions,
this gives us a total Hamming distance of 2n

2 · 2n

2 · n = n · (2n−1)2 = n · 22n−2. As in the set
(an{0, 1})nan between each adjacent 0’s or 1’s, there are n many letters a, the total diversity of
the set (an{0, 1})nan is the total Hamming distance of the set {0, 1}n, as the blocks of a’s do
not contribute to the minimal edit-distance and shifting a 0 or 1 over a block of a’s would be
too expensive, as discussed above.

Now, observe that only the non-satisfying assignments have an additional letter at the end
of the word. Hence, every word w ∈ unsat-LMinSync(A) contributes an additional weight of 1
for each word in sat-LMinSync(A). It further contributes an additional weight of 1 for each
unsatisfying assignment of φ, namely, for those words in unsat-LMinSync(A) that have the
complementary value of the last position of w as their last position. Note that the words in
unsat-LMinSync(A) only add a 1 for each unsatisfying assignment and not for each word in
unsat-LMinSync(A). Hence, the total diversity of LMinSync(A) is

n · 22n−2 + |unsat-LMinSync(A)| · 2n.

Therefore, if the diversity of LMinSync(A) is d, we can obtain the number of satisfying assign-
ments #sat as

#sat = 2n −
(
d− n · 22n−2

)
/2n = 2n − d

2n
+ n · 2n−2.

Hence, computing the diversity d of the set of subsequence-minimal synchronizing words of A
would also allow us to compute the number of satisfying assignments for φ in polynomial time.

8 Conformant Planning

Conformant planning [37, 78] is the task of finding a sequence of actions for a planning problem
that ensures that the goal will be achieved regardless of the initial state and of the nondeter-
minism of the planning domain. The essence of many planning problems can be abstracted
using the framework of automata theory [19, 20]. In this section, we use this point of view to
define a suitable notion of diversity of solutions in the context of conformant planning. Apart
from some notational differences, our terminology is borrowed from [19].

A planning domain can be abstracted as a 4-tuple D = (Q,Σ, δ, P ), where Q is a set of
states, Σ is a set of actions, δ ⊆ Q × Σ × Q is a transition relation, and P is a function that
assigns a set P (q) of propositions (or beliefs) to each state q ∈ Q. Intuitively, P (q) is the set of
beliefs that are known to hold at state q, and a transition (q, a, q′) ∈ δ indicates that the set of
beliefs P (q) should be updated to P (q′) if action a is taken from state q. Note that that the
relation δ may be nondeterministic, meaning that for some state q ∈ Q and some action a ∈ Σ,
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Figure 2: Automaton constructed in the proof of Theorem 29. As an example, the automaton
for the formula φ = {c1, c2, c3} with the clauses c1 = {x1,¬x3, x4}, and c2 = {¬x1, x2,¬x4},
c3 = {x1, x2, x3} is drawn (n = 4). Dotted transitions labeled with words represent a chain
labeled by the letters of the word in order where all other letters are realized as self-loops. All
not explicitly drawn transitions are realized as self-loops.

there may be two states q′ and q′′ such that both (q, a, q′) and (q, a, q′′) belong to δ. In this
case, the result of taking the action a at state q is regarded as being undetermined. A planning
problem is a triple (D, I,G) where D = (Q,Σ, δ, P ) is a planning domain, I ⊆ Q is a set of
initial states, and G ⊆ Q is a set of goal states.

A word u ∈ Σ∗ is called a plan. An action a is said to be applicable in a state q if there is
some state q′ such that (q, a, q′) ∈ δ. Such an action a is applicable in a set of states S if it is
applicable in every state of S. A plan u is said to be applicable in a set of states S if either u = ε
and S is non-empty, or u = au′ for some action a and some plan u′ ∈ Σ∗, a is applicable on S
and u′ is applicable in δ(S, a). The notion of a conformant plan is captured by the following
definition.

Definition 30 (Conformant Plan). Let (D, I,G) be a planning problem with planning domain
D = (Q,Σ, δ, P ). A plan u ∈ Σ∗ is conformant for (D, I,G) if the following conditions are
satisfied:

1. u is applicable in I, and

2. δ(I, u) ⊆ G.

Intuitively, the two conditions guarantee that a conformant plan u achieves a goal regardless
of the initial state, and of the nondeterministic actions that may occur during the execution
of u. The following lemma, which is an analogue of Lemma 10 in the context of conformant
planning, gives an upper bound on the number of states in a DFA accepting all conformant
words for a given planning problem (D, I,G).

Lemma 31 (Conformant Words). Let D = (Q,Σ, δ, P ) be a planning domain, and (D, I,G)
be a planning problem. One can construct in time |Σ| · 2O(|Q|) a DFA Conf(D, I,G) with 2|Q|
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states such that

L(Conf(D, I,G)) = {u : u is conformant for (D, I,G)}.

Proof. We let Conf(D, I,G) be the DFA A whose set of states Q is the set of all subsets of Q, I
is the unique initial state, and the set of final states F is the set of all non-empty subsets of G.
The state ∅ acts as a trap state of Conf(D, I,G). The transition function ∆ : Q×Σ → Q sends
each pair (S, a) ∈ Q×Σ to the state {q′ : ∃q ∈ S, (q, a, q′) ∈ δ} if a is applicable in every state
of S, and to the state ∅ if a is not applicable from some state of S. Note that the automaton
Conf(D, I,G) has 2|Q| states and can be constructed in time |Σ| · 2O(|Q|). Additionally, by
construction, we have that a plan u = a1a2 . . . an is accepted by Conf(D, I,G) if and only if the
plan u is applicable in I and δ(I, u) ⊆ G, or, in other words, if and only if u is conformant for
(D, I,G).

Notice that although the construction of the previous proof is reminiscent of the powerset
construction explained in Section 2, starting with the NFA specified by (Q,Σ, δ, I,G), it is
not the same, as the transition function has to be defined differently, because an action a is
adimissible to a set of states S if all states in S have valid transitions using a. More precisely,
if an action a is not applicable in some state of S, then ∆(S, a) = ∅. Also, the set of final states
is defined differently.

Let (D, I,G) be a planning problem and u be a conformant plan for (D, I,G). We say that
u is subsequence minimal if no proper subsequence of u is a conformant plan for (D, I,G). The
following corollary, which is an analogue of Corollary 11 in the realm of conformant planning,
states that one can construct an automaton accepting precisely the set of subsequence-minimal
conformant words for a given planning problem (D, I,G). The proof of this corollary follows
straightforwardly by plugging the automaton Conf(D, I,G) of Lemma 31 into Lemma 9.

Corollary 32. Let (D, I,G) be a planning problem where D = (Q,Σ, δ, P ). One can construct

in time O(|Σ| ·22|Q|+|Q|) a DFA ConfMinSubseq(A) with at most 22
|Q|+|Q| many states accepting

the language
L(ConfMinSubseq(A)) = {u : u is

subsequence-minimal conformant for (D, I,G)}.

The next theorem is an analogue of Theorem 18 in the context of conformant planning. In
this theorem we consider the problem of computing a sufficiently diverse set W of subsequence-
minimal conformant plans for a planning problem (D, I,G), with the property that each word
in W belongs to the language of an automaton B given at the input. The intuition is that
B is a specification of all legal plans that could occur in a given environment independent of
(D, I,G). The proof of this theorem is identical to the proof of Theorem 18 with the exception
that Corollary 32 is used instead of Corollary 11. Notice that it might well be interesting to pro-
duce several different conformant plans for the planner’s decision (who might have background
knowledge not formalized by the underlying logic), but clearly not too many not to confuse the
planner.

Theorem 33. Let (D, I,G) be a planning problem with planning domain D = (Q,Σ, δ, P ).
Given an NFA B = (Q′,Σ, δ′, Q′

0, F
′), one can determine in time O(fD(r, k) · |Q′|r log(|Q′|))

whether there is a set W ⊆ L(B) with r plans such that each plan in W is subsequence-minimal
conformant for (D, I,G) and MinDiv(W ) ≥ k.
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9 Further Applications

In this section, we describe several applications of the notion of a synchronizing word in the
context of artificial intelligence, different from conformant planning that was dealt with in the
previous section. We also describe possible ways in which the notion of solution diversity may
enhance these applications.

9.1 Part Orienters

Part orienters are a type of mechanical device used to reorient objects from an unknown initial
direction to a predetermined direction. These devices, which are very common for instance,
in assembly lines, provide a natural application for the notions of synchronizing automata and
synchronizing words [3]. In a pioneering work in this area, Natarajan modeled part orienters as
deterministic complete automata where each state corresponds to a possible direction (assumed
to be finitely many), and each letter corresponds to the application of a direction modifier [67].
Intuitively, each synchronizing word in such an automaton A corresponds to the application of
a sequence of modifications that sends a part to a predetermined direction (state) no matter
what the initial direction (state) of the part at the beginning of the process.

The original motivation of designing a part orienters was revisited in [83] where Türker and
Yenigün modelled the design of an assembly line, which again brings a part from an unknown
orientation into a known orientation, where different modifiers have different costs. For example,
a robot arm is much more expensive than a simple obstacle wall. Therefore, they enhance the
alphabet Σ with a cost function c : Σ → N. It is natural then to ask for the existence of a
synchronizing word of minimum cost. Or, for a given α ∈ N, to find a synchronizing word of
cost at most α.

It is worth noting for each cost value α ∈ N, one can construct an automaton Bα with
O(α) states that accepts a word w ∈ Σ∗ if and only if its cost is at most α. Here, states are the
numbers {0, . . . , α}∪{q†}, 0 is the initial state, and reading a symbol a ∈ Σ from a state i causes
the automaton to transition to state i+c(a) if this value is at most α or to the sink state q† if the
value is greater than α. Therefore, finding a synchronizing word of cost at most α for a DFA A
may be modeled as finding a synchronizing for A that also belongs to L(Bα). In this context,
diversity may be desirable because some constraints such as power consumption, machine size,
space availability, etc. may be difficult to formalize as a regular constraint, and therefore, it
would be good to allow the engineers developing the part orienter to choose among such. Using
Theorem 18, the task of finding a set with r subsequence-minimal synchronizing words of cost
at most α and that are k apart from each other can be solved in time O(fA(r, k) · αr log(α)).

9.2 Synchronizing Robots

Ronald L. Rivest and Robert E. Schapire considered in [72] the idea of modeling the map
of an environment as a finite automaton. In their setting, the environment was originally
unknown to the robot(s) who had to explore it and then build (learn) a map. Due to this
scenario, the automata were in fact finite automata with outputs, and the paper did not consider
synchronizing words but rather homing sequences, which can be viewed as a more general
concept, but still analogous to synchronizing words, for automata with outputs.

Abstracting away these differences between automata with and without outputs, at a certain
level of abstraction, a map can be viewed as a finite automaton, where the ‘input letters’ are
interpreted as commands that move the robot, bringing it thus in a different state, i.e., a different
position on the map. To make this scenario more concrete, think of robots that help visitors of
a big museum building, say, by telling them information about the items in a particular room
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(this room could be then viewed as a ‘state’ of the automaton). The robots can move and
hence serve the visitors as personal assistants. This model abstracts from several difficulties,
for instance, of the problem of finding out in which room the robot is. Notice that although
nowadays many of these problems can be solved by GPS, this might not be the case in a big
concrete building, as there could be problems with receiving the signals. See [26, 55] for other
attempts on this problem. For simplicity, each room might have at most four doors, to the
North, East, South and West, so that a word over the alphabet {N,E, S,W} can be interpreted
as a sequence of movements of a robot; if some door is not present, the robot simply stays in
the room where it is. In the evening, all robots need to be put back to a particular room where
they stay overnight and their batteries are recharged. Obviously, a synchronizing word could
help here, as it means that only one particular sequence of commands need to be stored in the
robots’ memories, irrespectively of where they are. The overnight room of the robots would
then be the synchronizing state.

However, there are practical complications to this approach: Even if all robots start their
evening journey in different rooms, after executing, say, half of the synchronizing word, all the
robots will be in only few of the rooms, so that many robots will be in the same room. The
problem is now that of congestion: there will be traffic jams, slowing down the ‘evening reset’,
because dozens of robots cannot pass through the same door at the same time. How can we
avoid this problem that many of us know from rush hour scenarios in our cities? If not all
robots would follow the same synchronizing word, then there are good chances that some of the
mentioned traffic jams are avoided. Hence, we suggest that the robots may store a small diverse
set of synchronizing words. In the evening, each robot will pick one of the synchronizing words
at random and follow its commands. In this context, earlier studies on dealing with stochastic
aspects of finite automata might be of interest, as they also sometimes deal with the sketched
robot orientation application, see [23].

9.3 A Robot Coming Home

As explained in the previous section, maps could be stored as state spaces / finite automata.
Then, a synchronizing word is a sequence of elementary commands that tell a robot how to get
home, assuming he got lost, or maybe just because it is too difficult to store a word that leads
home for each possible position. However, if a robot executes such a synchronizing sequence
each evening, then it becomes quite predictable when it will be at what position, in particular
concerning the last positions of the journey. This in turn makes the robot amenable to attacks,
say, from adversaries who notice this ‘regular behavior’, so that they could set up a trap. In
order to avoid this (type of analysis), the robot could store a few diverse synchronizing words
and flip a coin before starting its journey home, hence (seemingly) selecting a different tour
each evening. This way, it could create a certain level of security against ambush attacks.

In fact, the ideas presented in this and in the preceding section could be also of practical help
in the following scenario that goes beyond problems concerning synchronizing words, helping
with traffic jams originating from typical rush hour scenarios in our cities, where often enough
people work in one part W of the city but live in another part L, so that they have to move
from L to W and back each day. Usually, there is not just one optimal route, but there are a
few possible routes. Nonetheless, most people do not change their habits, and also navigation
systems typically stick with one decision (in that case, clearly influenced by the current traffic
situation). But we all know from personal experience what happens if we only follow our habits
or also, if we follow the advice given by navigation systems that try to avoid jams by looking
at the current traffic situation: we will end up in (possibly different) traffic jams. Why does
this happen if we follow the advice of our navigation system? Just because many drivers do
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this at the same time, and all navigation systems follow similar if not the same algorithm to
determine an alternative route, this will lead to a new traffic jam on our route. In the future,
this might become even worse due to autonomous driving cars. In order to avoid this situation,
one possible simiple solution would be to randomly select from a diverse set of routes. On
average, this simple procedure should help balance the traffic over all possible routes between L
and W .

9.4 Putting Several Agents into Synchrony

Consider the setting where we have a large number of identical copies of an agent, whose
interaction with the environment is modeled by a deterministic finite automaton. Even though
the agents are identical, their behavior is dictated by the environment, and therefore, distinct
agents may be in distinct states at any given time, depending on how they have reacted to the
environment. Suppose one wishes to put all agents into synchrony, by making them behave in
the same way for a certain period of time, before they start to interact with the environment
again. This could be, for instance, imposing that a swarm of very simple robots move in the same
direction. This can be achieved by broadcasting a synchronizing word. Diversity is relevant in
this case because distinct synchronizing words may correspond to distinct behavioural patterns
to be followed by the automata.

Notice that this approach is distinct from the classical Firing Squad Synchronization Prob-
lem that is typically considered in one- or more-dimensional cellular automata, because the
corresponding solution strategies heavily rely on a known interconnection pattern between the
finite automata that need to be synchronized, which is not the case in the scenario that we
described above. While the 1-dimensional case was first solved by John McCarthy and Marvin
Minsky in the 1950s, there is quite a body of literature trying to improve on the running times
or on the number of states of the finite automata involved. We only refer to [65, 77].

9.5 Molecular Computing Machines

An interesting application of the notion of synchronization occurs in the realm of molecular
computing machines [10]. More specifically, in [9, 8], Benenson et al. introduced the notion of
DNA and ATP based automata, which are automata operating in a molecular level. They were
able to run experiments consisting of 3·1012 automata per µl and performing 6.6·1010 transitions
per second per µl with transition fidelity 99.9%. Since distinct copies of the automaton process
distinct molecules, the state of each such copy may depend on the actual molecule being read
at the moment. In particular, the state of the automaton at the end of the process is unknown.
In order to be reusable, molecular automata must be reset. This can be achieved by adding a
mix of molecules encoding synchronizing words to the automata soup. This causes all automata
in the soup to reboot. Even though one synchronizing word is enough to reset the system,
we suggest to explore the use of a diverse set of synchronizing sequences to improve the reset
operation in practice.

9.6 Games with incomplete information

In [63], Bastien Maubert and Sophie Pinchimat made some connection between game theory
and automaton synchronization. In their work, they reduce the existence of a synchronizing
word for a complete NFA to the existence of a winning strategy in a game with opacity condition
(see [64] for the definition). This means that also our hardness results translate to hardness
results in the sketched game-theoretic application. Even more, in the mentioned papers, it is also
shown how to make use of such game-theoretic hardness results in security applications. Hence,
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we suggest that also our hardness results could be interpreted as tools for proving security of
certain protocols. As in this context, NFA are of special interest, we point again to Remark 20.

10 Conclusion

In this work, we have introduced a suitable notion of diversity of solutions in the context of
the theory of synchronizing automata. Using this framework, we showed that for each r, k ∈ N,
each DFA A, and each non-deterministic finite automaton B over an alphabet Σ, the problem
of computing a subset {w1, . . . , wr} ⊆ L(B) of subsequence-minimal synchronizing words for A,
with pairwise edit distance of at least k, can be solved in time O(fA(r, k) · |B|r log(|B|)) for
some suitable function f depending only on A, r and k. Note that our algorithm has a fixed-
parameter tractable dependency on the parameters |A| and k and an XP dependency on the
parameter r. Therefore, for each fixed r, our algorithm runs in FPT time when parameterized
by |A| and k. We note that the existence of such FPT-algorithms was not clear even when
the number r of solutions was fixed to 2. We leave the problem of determining whether one
can obtain an algorithm of the form O(fA(r, k) · |B|O(1)) as an interesting direction of further
research. We have also shown that similar results hold in the context of conformant planning.

For some simplified versions of our problems, we proved NP- or coNP-hardness results.
Then, it is conceivable that our main problems are hard for higher levels of the polynomial
hierarchy. Here, we want to point to recent papers [15, 33] that study hardness and membership
of combinatorial problems with some flavor of minimality, placing them into low levels of the
said hierarchy.

We also described the impact of our results in different areas of artificial intelligence. We
already mentioned conformant planning above, an area that finds quite direct applications of
our results. But the concept of synchronization plays also an important role concerning some
aspects of designing automatic production assembly lines when it comes to the deployment
of part orienters. This application would also motivate to further study costs associated to
input letters and to ask for minimum-cost synchronizing words or to incorporate costs into the
diversity context. We also described two applications of (diverse sets of) synchronizing words
in the context of robotics. These scenarios can be generalized and abstracted towards putting
several agents into synchrony. Furthermore, we suggested to use (diverse sets of) synchronizing
words for molecular computing machines. Finally, we pointed to the connections between game
theory and automaton synchronization and suggested to study diversity in this context.

In the context of finite automata with outputs, the notion of homing sequences plays an
analogous role to the notion of synchronization for finite automata without outputs. We suggest
extending our research on diverse sets of synchronizing words to homing sequences and related
notions, as they were coined already in the beginning of automata theory. We refer to [54, 56, 75]
as a survey of these notions. Notice that homing sequences are well-motivated in particular in
the context of robot navigation.
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